1
|
Kumar S, Hoshino M, Kerkeni B, García G, Ouerfelli G, Al-Mogren MM, Limão-Vieira P. SF 6 Negative Ion Formation in Charge Transfer Experiments. Molecules 2024; 29:4118. [PMID: 39274966 PMCID: PMC11397648 DOI: 10.3390/molecules29174118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
In the present work, we report an update and extension of the previous ion-pair formation study of Hubers, M.M.; Los, J. Chem. Phys.1975, 10, 235-259, noting new fragment anions from time-of-flight mass spectrometry. The branching ratios obtained from the negative ions formed in K + SF6 collisions, in a wide energy range from 10.7 up to 213.1 eV in the centre-of-mass frame, show that the main anion is assigned to SF5- and contributing to more than 70% of the total ion yield, followed by the non-dissociated parent anion SF6- and F-. Other less intense anions amounting to <20% are assigned to SF3- and F2-, while a trace contribution at 32u is tentatively assigned to S- formation, although the rather complex intramolecular energy redistribution within the temporary negative ion is formed during the collision. An energy loss spectrum of potassium cation post-collision is recorded showing features that have been assigned with the help of theoretical calculations. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom are performed to support the experimental findings. Apart from the role of the different resonances participating in the formation of different anions, the role of higher-lying electronic-excited states of Rydberg character are noted.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Masamitsu Hoshino
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan
| | - Boutheïna Kerkeni
- ISAMM, Université de la Manouba, La Manouba 2010, Tunisia
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - Ghofrane Ouerfelli
- Department of Physics, College of Khurma University, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muneerah Mogren Al-Mogren
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Ryiadh 11451, Saudi Arabia
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Lozano AI, Kumar S, Pereira PJS, Kerkeni B, García G, Limão-Vieira P. Low-lying Negative Ion States Probed in Potassium - Ethanol Collisions. Chemphyschem 2024; 25:e202400314. [PMID: 38630012 DOI: 10.1002/cphc.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Indexed: 05/23/2024]
Abstract
Dissociative electron transfer in collisions between neutral potassium atoms and neutral ethanol molecules yields mainly OH-, followed by C2H5O-, O-, CH3 - and CH2 -. The dynamics of negative ions have been investigated by recording time-of-flight mass spectra in a wide range of collision energies from 17.5 to 350 eV in the lab frame, where the branching ratios show a relevant energy dependence for low/intermediate collision energies. The dominant fragmentation channel in the whole energy range investigated has been assigned to the hydroxyl anion in contrast to oxygen anion from dissociative electron attachment (DEA) experiments. This result shows the relevant role of the electron donor in the vicinity of the temporary negative ion formed allowing access to reactions which are not thermodynamically attained in DEA experiments. The electronic state spectroscopy of such negative ions, was obtained from potassium cation energy loss spectra in the forward scattering direction at 205 eV impact energy, showing a prevalent Feshbach resonance at 9.36±0.10 eV withσ O H * / σ C H * ${{\sigma }_{OH}^{^{\ast}}/{\sigma }_{CH}^{^{\ast}}}$ character, while a less pronouncedσ O H * ${{\sigma }_{OH}^{^{\ast}}}$ contribution assigned to a shape resonance has been obtained at 3.16±0.10 eV. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom have been performed to support the experimental findings.
Collapse
Affiliation(s)
- Ana Isabel Lozano
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
| | - Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
| | - Pedro J S Pereira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
- Department of Mathematics, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal
| | - Boutheïna Kerkeni
- ISAMM, Université de la Manouba, La Manouba, 2010, Tunisia
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis, 2092, Tunisia
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006, Madrid, Spain
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, 94720, California, USA
| |
Collapse
|
3
|
Sensing the ortho Positions in C6Cl6 and C6H4Cl2 from Cl2− Formation upon Molecular Reduction. Molecules 2022; 27:molecules27154820. [PMID: 35956769 PMCID: PMC9369944 DOI: 10.3390/molecules27154820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
The geometrical effect of chlorine atom positions in polyatomic molecules after capturing a low-energy electron is shown to be a prevalent mechanism yielding Cl2−. In this work, we investigated hexachlorobenzene reduction in electron transfer experiments to determine the role of chlorine atom positions around the aromatic ring, and compared our results with those using ortho-, meta- and para-dichlorobenzene molecules. This was achieved by combining gas-phase experiments to determine the reaction threshold by means of mass spectrometry together with quantum chemical calculations. We also observed that Cl2− formation can only occur in 1,2-C6H4Cl2, where the two closest C–Cl bonds are cleaved while the chlorine atoms are brought together within the ring framework due to excess energy dissipation. These results show that a strong coupling between electronic and C–Cl bending motion is responsible for a positional isomeric effect, where molecular recognition is a determining factor in chlorine anion formation.
Collapse
|
4
|
Lozano AI, Kumar S, Kerkeni B, García G, Limão-Vieira P. Methanol Negative Ion Fragmentation Probed in Electron Transfer Experiments. J Phys Chem A 2022; 126:1076-1084. [PMID: 35143199 DOI: 10.1021/acs.jpca.1c07588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this contribution, we report a novel comprehensive investigation on negative ion formation from electron transfer processes mediated by neutral potassium atom collisions with neutral methanol molecules employing experimental and theoretical methodologies. Methanol collision-induced fragmentation yielding anion formation has been obtained by time-of-flight mass spectrometry in the wide energy range of 19 to 275 eV in the lab frame. The negative ions formed in such a collision process have been assigned to CH3O-, OH-, and O-, with a strong energy dependence especially at lower collision energies. The most intense fragment anions in the whole energy range investigated have been assigned to OH- and CH3O-. Additionally, the potassium cation energy loss spectrum in the forward scattering direction at 205 eV impact energy has revealed several features, where the two main electronic states accessible during the collision events have vertical electron affinities of -8.26 ± 0.20 and -10.36 ± 0.2 eV. Quantum chemical calculations have been performed for the lowest-lying unoccupied molecular orbitals of methanol in the presence of a potassium atom, lending strong support to the experimental findings.
Collapse
Affiliation(s)
- Ana Isabel Lozano
- Atomic and Molecular Collisions Laboratory, Centro de Física e Investigação Tecnológica, Department of Physics, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.,Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, Madrid 28006, Spain
| | - Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, Centro de Física e Investigação Tecnológica, Department of Physics, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Boutheïna Kerkeni
- Institut Supérieur des Arts Multimédia de la Manouba, Université de la Manouba, La Manouba 2010, Tunisia.,Département de Physique, Laboratoire de recherche: Physique de la matière condensée, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, Madrid 28006, Spain
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, Centro de Física e Investigação Tecnológica, Department of Physics, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| |
Collapse
|