1
|
Bergmeister S, Ganner L, Ončák M, Gruber E. Gas-Phase Electronic Structure of Phthalocyanine Ions: A Study of Symmetry and Solvation Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307816. [PMID: 38225692 PMCID: PMC10966524 DOI: 10.1002/advs.202307816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Research into and applications of phthalocyanines (Pc) are mostly connected to their intriguing electronic properties. Here, messenger-type UV-vis spectroscopy of two metal-free ions from the phthalocyanine family, cationic H2Pc+ and H2PcD+, along with their hydrates is performed. They show that the electronic properties of both ions can be traced to those in the conjugate base, Pc2-, however, they are affected by state splitting due to the reduced symmetry; in the H2Pc+ radical cation, a new band appears due to excitations into the singly-occupied molecular orbital. Quantum chemical spectra modeling reproduces all important features of the measured spectra and provides insight into the nature of electronic transitions. Hydration of the ions has only a mild effect on the electronic spectra, showing the stability of the electronic structure with respect to solvation effects.
Collapse
Affiliation(s)
- Stefan Bergmeister
- Institute for Ion and Applied PhysicsUniversity of InnsbruckTechnikerstraße 25Innsbruck6020Austria
| | - Lisa Ganner
- Institute for Ion and Applied PhysicsUniversity of InnsbruckTechnikerstraße 25Innsbruck6020Austria
| | - Milan Ončák
- Institute for Ion and Applied PhysicsUniversity of InnsbruckTechnikerstraße 25Innsbruck6020Austria
| | - Elisabeth Gruber
- Institute for Ion and Applied PhysicsUniversity of InnsbruckTechnikerstraße 25Innsbruck6020Austria
| |
Collapse
|
2
|
Diop M, El-Hayek M, Attard J, Muhieddine A, Veremeienko V, Soorkia S, Carbonnière P, de la Lande A, Soep B, Shafizadeh N. Chlorophyll and pheophytin protonated and deprotonated ions: Observation and theory. J Chem Phys 2023; 159:194308. [PMID: 37987519 DOI: 10.1063/5.0174351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Pheophytin a and chlorophyll a have been investigated by electrospray mass spectrometry in the positive and negative modes, in view of the importance of the knowledge of their properties in photosynthesis. Pheophytin and chlorophyll are both observed intensely in the protonated mode, and their main fragmentation route is the loss of their phytyl chain. Pheophytin is observed intact in the negative mode, while under collisions, it is primarily cleaved beyond the phytyl chain and loses the attaching propionate group. Chlorophyll is not detected in normal conditions in the negative mode, but addition of methanol solvent molecule is detected. Fragmentation of this adduct primarily forms a product (-30 amu) that dissociates into dephytyllated deprotonated chlorophyll. Semi-empirical molecular dynamics calculations show that the phytyl chain is unfolded from the chlorin cycle in pheophytin a and folded in chlorophyll a. Density functional theory calculations have been conducted to locate the charges on protonated and deprotonated pheophytin a and chlorophyll a and have found the major location sites that are notably more stable in energy by more than 0.5 eV than the others. The deprotonation site is found identical for pheophytin a and the chlorophyll a-methanol adduct. This is in line with experiment and calculation locating the addition of methanol on a double bond of deprotonated chlorophyll a.
Collapse
Affiliation(s)
- M Diop
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d' Orsay, 91405 Orsay, France
| | - M El-Hayek
- Université Paris Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - J Attard
- Université Paris Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
- Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Pau, France
| | - A Muhieddine
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d' Orsay, 91405 Orsay, France
| | - V Veremeienko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - S Soorkia
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d' Orsay, 91405 Orsay, France
| | - Ph Carbonnière
- Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Pau, France
| | - A de la Lande
- Université Paris Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - B Soep
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d' Orsay, 91405 Orsay, France
| | - N Shafizadeh
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d' Orsay, 91405 Orsay, France
| |
Collapse
|
3
|
Li M, Kobayashi R, Amos RD, Ford MJ, Reimers JR. Density functionals with asymptotic-potential corrections are required for the simulation of spectroscopic properties of materials. Chem Sci 2022; 13:1492-1503. [PMID: 35222934 PMCID: PMC8809424 DOI: 10.1039/d1sc03738b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022] Open
Abstract
Five effects of correction of the asymptotic potential error in density functionals are identified that significantly improve calculated properties of molecular excited states involving charge-transfer character. Newly developed materials-science computational methods are used to demonstrate how these effects manifest in materials spectroscopy. Connection is made considering chlorophyll-a as a paradigm for molecular spectroscopy, 22 iconic materials as paradigms for 3D materials spectroscopy, and the VN - defect in hexagonal boron nitride as an example of the spectroscopy of defects in 2D materials pertaining to nanophotonics. Defects can equally be thought of as being "molecular" and "materials" in nature and hence bridge the relms of molecular and materials spectroscopies. It is concluded that the density functional HSE06, currently considered as the standard for accurate calculations of materials spectroscopy, should be replaced, in most instances, by the computationally similar but asymptotically corrected CAM-B3LYP functional, with some specific functionals for materials-use only providing further improvements.
Collapse
Affiliation(s)
- Musen Li
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University Shanghai 200444 China
| | - Rika Kobayashi
- ANU Supercomputer Facility Leonard Huxley Bldg. 56, Mills Rd Canberra ACT 2601 Australia
| | - Roger D Amos
- ANU Supercomputer Facility Leonard Huxley Bldg. 56, Mills Rd Canberra ACT 2601 Australia
| | - Michael J Ford
- University of Technology Sydney, School of Mathematical and Physical Sciences Ultimo New South Wales 2007 Australia
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University Shanghai 200444 China
- University of Technology Sydney, School of Mathematical and Physical Sciences Ultimo New South Wales 2007 Australia
| |
Collapse
|
4
|
Gruber E, Teiwes R, Kjær C, Brøndsted Nielsen S, Andersen LH. Tuning fast excited-state decay by ligand attachment in isolated chlorophyll a. Phys Chem Chem Phys 2021; 24:149-155. [PMID: 34901981 DOI: 10.1039/d1cp04356k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Excited-state dynamics plays a key role for light harvesting and energy transport in photosynthetic proteins but it is nontrivial to separate the intrinsic photophysics of the light-absorbers (chlorophylls) from interactions with the protein matrix. Here we study chlorophyll a (4-coordinate complex) and axially ligated chlorophyll a (5-coordinate complex) isolated in vacuo applying mass spectrometry to shed light on the intrinsic dynamics in the absence of nearby chlorophylls, carotenoids, amino acids, and water molecules. The 4-coordinate complexes are tagged by quaternary ammonium ions while the charge is provided by a formate ligand in the case of 5-coordinate complexes. Regardless of excitation to the Soret band or the Q band, a fast ps decay is observed, which is ascribed to the decay of the lowest excited singlet state either by intersystem crossing (ISC) to nearby triplet states or by excited-state relaxation on the excited-state potential-energy surface. The lifetime of the first excited state is 15 ps with Mg2+ at the chlorophyll center, but only 1.7 ps when formate is attached to Mg2+. When the Soret band is excited, an initial sup-ps relaxation is observed which is ascribed to fast internal conversion to the first excited state. With respect to ISC, two factors seem to play a role for the reduced lifetime of the formate-chlorophyll complex: (i) The Mg ion is pulled out of the porphyrin plane thus reducing the symmetry of the chromophore, and (ii) the first excited state (Q band) and T3 are tuned almost into resonance by the ligand, which increases the singlet-triplet mixing.
Collapse
Affiliation(s)
- Elisabeth Gruber
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| | - Ricky Teiwes
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| | | | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| |
Collapse
|
5
|
Guo DJ, Li DP, Singh RK, Singh P, Sharma A, Verma KK, Qin Y, Khan Q, Lu Z, Malviya MK, Song XP, Xing YX, Li YR. Differential Protein Expression Analysis of Two Sugarcane Varieties in Response to Diazotrophic Plant Growth-Promoting Endophyte Enterobacter roggenkampii ED5. FRONTIERS IN PLANT SCIENCE 2021; 12:727741. [PMID: 34887881 PMCID: PMC8649694 DOI: 10.3389/fpls.2021.727741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
Plant endophytic bacteria have many vital roles in plant growth promotion (PGP), such as nitrogen (N) fixation and resistance to biotic and abiotic stresses. In this study, the seedlings of sugarcane varieties B8 (requires a low concentration of nitrogen for growth) and GT11 (requires a high concentration of nitrogen for growth) were inoculated with endophytic diazotroph Enterobacter roggenkampii ED5, which exhibits multiple PGP traits, isolated from sugarcane roots. The results showed that the inoculation with E. roggenkampii ED5 promoted the growth of plant significantly in both sugarcane varieties. 15N detection at 60 days post-inoculation proved that the inoculation with strain ED5 increased the total nitrogen concentration in the leaf and root than control in both sugarcane varieties, which was higher in B8. Biochemical parameters and phytohormones in leaf were analyzed at 30 and 60 days after the inoculation. The results showed that the inoculation with E. roggenkampii ED5 improved the activities of superoxide dismutase (SOD), catalase (CAT), NADH-glutamate dehydrogenase (NADH-GDH), glutamine synthetase (GS), and endo-β-1,4-glucanase, and the contents of proline and indole acetic acid (IAA) in leaf, and it was generally more significant in B8 than in GT11. Tandem Mass Tags (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to perform comparative proteomic analysis in the sugarcane leaves at 30 days after inoculation with strain ED5. A total of 27,508 proteins were detected, and 378 differentially expressed proteins (DEPs) were found in the treated sugarcane variety B8 (BE) as compared to control (BC), of which 244 were upregulated and 134 were downregulated. In contrast, a total of 177 DEPs were identified in the treated sugarcane variety GT11 (GE) as compared to control (GC), of which 103 were upregulated and 74 were downregulated. The DEPs were associated with nitrogen metabolism, photosynthesis, starch, sucrose metabolism, response to oxidative stress, hydrolase activity, oxidative phosphorylation, glutathione metabolism, phenylpropanoid metabolic process, and response to stresses in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. To the best of our knowledge, this is the first proteomic approach to investigate the molecular basis of the interaction between N-fixing endophytic strain E. roggenkampii ED5 and sugarcane.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Lu
- College of Agriculture, Guangxi University, Nanning, China
| | - Mukesh K. Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| |
Collapse
|
6
|
Reimers JR, Rätsep M, Freiberg A. Asymmetry in the Q y Fluorescence and Absorption Spectra of Chlorophyll a Pertaining to Exciton Dynamics. Front Chem 2020; 8:588289. [PMID: 33344415 PMCID: PMC7738624 DOI: 10.3389/fchem.2020.588289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Significant asymmetry found between the high-resolution Qy emission and absorption spectra of chlorophyll-a is herein explained, providing basic information needed to understand photosynthetic exciton transport and photochemical reactions. The Qy spectral asymmetry in chlorophyll has previously been masked by interference in absorption from the nearby Qx transition, but this effect has recently been removed using extensive quantum spectral simulations or else by analytical inversion of absorption and magnetic circular dichroism data, allowing high-resolution absorption information to be accurately determined from fluorescence-excitation spectra. To compliment this, here, we measure and thoroughly analyze the high-resolution differential fluorescence line narrowing spectra of chlorophyll-a in trimethylamine and in 1-propanol. The results show that vibrational frequencies often change little between absorption and emission, yet large changes in line intensities are found, this effect also being strongly solvent dependent. Among other effects, the analysis in terms of four basic patterns of Duschinsky-rotation matrix elements, obtained using CAM-B3LYP calculations, predicts that a chlorophyll-a molecule excited into a specific vibrational level, may, without phase loss or energy relaxation, reemit the light over a spectral bandwidth exceeding 1,000 cm−1 (0.13 eV) to influence exciton-transport dynamics.
Collapse
Affiliation(s)
- Jeffrey R Reimers
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Margus Rätsep
- Institute of Physics, University of Tartu, Tartu, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|