1
|
Cooper JC, Kirrander A. Electronic structure of norbornadiene and quadricyclane. Phys Chem Chem Phys 2025; 27:3089-3101. [PMID: 39831396 DOI: 10.1039/d4cp03960b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The ground and excited state electronic structure of the molecular photoswitches quadricyclane and norbornadiene is examined qualitatively and quantitatively. A new custom basis set is introduced, optimised for efficient yet accurate calculations. A number of advanced multi-configurational and multi-reference electronic structure methods are evaluated, identifying those sufficiently accurate and efficient to be used in on-the-fly simulations of photoexcited dynamics. The key valence states participating in the isomerisation reaction are investigated, specifically mapping the important S1/S0 conical intersection that governs the non-radiative decay of the excited system. The powerful yet simple three-state valence model introduced here provides a suitable base for future computational exploration of the photodynamics of the substituted molecules suitable for e.g. energy-storage applications.
Collapse
Affiliation(s)
- Joseph C Cooper
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
2
|
Cardosa-Gutierrez M, Levine RD, Remacle F. Electronic Coherences Excited by an Ultra Short Pulse Are Robust with Respect to Averaging over Randomly Oriented Molecules as Shown by Singular Value Decomposition. J Phys Chem A 2024; 128:2937-2947. [PMID: 38568803 DOI: 10.1021/acs.jpca.3c07856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We report a methodology for averaging quantum photoexcitation vibronic dynamics over the initial orientations of the molecules with respect to an ultrashort light pulse. We use singular value decomposition of the ensemble density matrix of the excited molecules, which allows the identification of the few dominant principal molecular orientations with respect to the polarization direction of the electric field. The principal orientations provide insights into the specific stereodynamics of the corresponding principal molecular vibronic states. The massive compaction of the vibronic density matrix of the ensemble of randomly oriented pumped molecules enables a most efficient fully quantum mechanical time propagation scheme. Two examples are discussed for the quantum dynamics of the LiH molecule in the manifolds of its electronically excited Σ and Π states. Our results show that electronic and vibrational coherences between excited states of the same symmetry are resilient to averaging over an ensemble of molecular orientations and can be selectively excited at the ensemble level by tuning the pulse parameters.
Collapse
Affiliation(s)
| | - Raphael D Levine
- Fritz Haber Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Francoise Remacle
- Theoretical Physical Chemistry, UR MOLSYS, University of Liege, Liege B-4000, Belgium
- Fritz Haber Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Tran T, Ferté A, Vacher M. Simulating Attochemistry: Which Dynamics Method to Use? J Phys Chem Lett 2024; 15:3646-3652. [PMID: 38530933 PMCID: PMC11000647 DOI: 10.1021/acs.jpclett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Attochemistry aims to exploit the properties of coherent electronic wavepackets excited via attosecond pulses to control the formation of photoproducts. Such molecular processes can, in principle, be simulated with various nonadiabatic dynamics methods, yet the impact of the approximations underlying the methods is rarely assessed. The performances of widely used mixed quantum-classical approaches, Tully surface hopping, and classical Ehrenfest methods are evaluated against the high-accuracy DD-vMCG quantum dynamics. This comparison is conducted for the valence ionization of fluorobenzene. Analyzing the nuclear motion induced in the branching space of the nearby conical intersection, the results show that the mixed quantum-classical methods reproduce quantitatively the average motion of a quantum wavepacket when initiated on a single electronic state. However, they fail to properly capture the nuclear motion induced by an electronic wavepacket along the derivative coupling, the latter originating from the quantum electronic coherence property, key to attochemistry.
Collapse
Affiliation(s)
- Thierry Tran
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Anthony Ferté
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| |
Collapse
|
4
|
Borne KD, Cooper JC, Ashfold MNR, Bachmann J, Bhattacharyya S, Boll R, Bonanomi M, Bosch M, Callegari C, Centurion M, Coreno M, Curchod BFE, Danailov MB, Demidovich A, Di Fraia M, Erk B, Faccialà D, Feifel R, Forbes RJG, Hansen CS, Holland DMP, Ingle RA, Lindh R, Ma L, McGhee HG, Muvva SB, Nunes JPF, Odate A, Pathak S, Plekan O, Prince KC, Rebernik P, Rouzée A, Rudenko A, Simoncig A, Squibb RJ, Venkatachalam AS, Vozzi C, Weber PM, Kirrander A, Rolles D. Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane. Nat Chem 2024; 16:499-505. [PMID: 38307994 PMCID: PMC10997510 DOI: 10.1038/s41557-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
Collapse
Affiliation(s)
- Kurtis D Borne
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Joseph C Cooper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Julien Bachmann
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Surjendu Bhattacharyya
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Matteo Bonanomi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Michael Bosch
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marcello Coreno
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
- Istituto di Struttura della Materia (ISM-CNR), CNR, Trieste, Italy
| | | | | | | | | | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Davide Faccialà
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ruaridh J G Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Christopher S Hansen
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Rebecca A Ingle
- Department of Chemistry, University College London, London, UK
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Henry G McGhee
- Department of Chemistry, University College London, London, UK
| | - Sri Bhavya Muvva
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Asami Odate
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Shashank Pathak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Oksana Plekan
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | | | | | | | - Artem Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Richard J Squibb
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | - Caterina Vozzi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
5
|
Palmer MH, Hoffmann SV, Jones NC, Coreno M, de Simone M, Grazioli C, Aitken RA, Peureux C. High-level studies of the singlet states of quadricyclane, including analysis of a new experimental vacuum ultraviolet absorption spectrum by configuration interaction and density functional calculations. J Chem Phys 2023; 158:234303. [PMID: 37318170 DOI: 10.1063/5.0151758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
A synchrotron-based vacuum ultraviolet absorption spectrum (VUV) of quadricyclane (QC) is reported with energies up to 10.8 eV. Extensive vibrational structure has been extracted from the broad maxima by fitting short energy ranges of the VUV spectrum to high level polynomial functions and processing the regular residuals. Comparison of these data with our recent high-resolution photoelectron spectral of QC showed that this structure must be attributed to Rydberg states (RS). Several of these appear before the valence states at higher energies. Both types of states have been calculated by configuration interaction, including symmetry-adapted cluster studies (SAC-CI) and time dependent density functional theoretical methods (TDDFT). There is a close correlation between the SAC-CI vertical excitation energies (VEE) and both Becke 3-parameter hybrid functional (B3LYP), especially Coulomb-attenuating method-B3LYP determined ones. The VEE for several low-lying s-, p, d-, and f-RS have been determined by SAC-CI and adiabatic excitation energies by TDDFT methods. Searches for equilibrium structures for 11,3A2 and 11B1 states for QC led to rearrangement to a norbornadiene structure. Determination of the experimental 00 band positions, which show extremely low cross-sections, has been assisted by matching features in the spectra with Franck-Condon (FC) fits. Herzberg-Teller (HT) vibrational profiles for the RS are more intense than the FC ones, but only at high energy, and are attributed to up to ten quanta. The vibrational fine structure of the RS calculated by both FC and HT procedures gives an easy route to generating HT profiles for ionic states, which usually require non-standard procedures.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Marcello Coreno
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Monica de Simone
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Cesare Grazioli
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - R Alan Aitken
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland, United Kingdom
| | - Coralyse Peureux
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland, United Kingdom
| |
Collapse
|
6
|
Hernández F, Cox JM, Li J, Crespo-Otero R, Lopez SA. Multiconfigurational Calculations and Photodynamics Describe Norbornadiene Photochemistry. J Org Chem 2023; 88:5311-5320. [PMID: 37022327 PMCID: PMC10629221 DOI: 10.1021/acs.joc.2c02758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 04/07/2023]
Abstract
Storing solar energy is a vital component of using renewable energy sources to meet the growing demands of the global energy economy. Molecular solar thermal (MOST) energy storage is a promising means to store solar energy with on-demand energy release. The light-induced isomerization reaction of norbornadiene (NBD) to quadricyclane (QC) is of great interest because of the generally high energy storage density (0.97 MJ kg-1) and long thermal reversion lifetime (t1/2,300K = 8346 years). However, the mechanistic details of the ultrafast excited-state [2 + 2]-cycloaddition are largely unknown due to the limitations of experimental techniques in resolving accurate excited-state molecular structures. We now present a full computational study on the excited-state deactivation mechanism of NBD and its dimethyl dicyano derivative (DMDCNBD) in the gas phase. Our multiconfigurational calculations and nonadiabatic molecular dynamics simulations have enumerated the possible pathways with 557 S2 trajectories of NBD for 500 fs and 492 S1 trajectories of DMDCNBD for 800 fs. The simulations predicted the S2 and S1 lifetimes of NBD (62 and 221 fs, respectively) and the S1 lifetime of DMDCNBD (190 fs). The predicted quantum yields of QC and DCQC are 10 and 43%, respectively. Our simulations also show the mechanisms of forming other possible reaction products and their quantum yields.
Collapse
Affiliation(s)
- Federico
J. Hernández
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jordan M. Cox
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Jingbai Li
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, People’s
Republic of China
| | - Rachel Crespo-Otero
- School
of Physical and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Steven A. Lopez
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Vester J, Despré V, Kuleff AI. The role of symmetric vibrational modes in the decoherence of correlation-driven charge migration. J Chem Phys 2023; 158:104305. [PMID: 36922132 DOI: 10.1063/5.0136681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Due to the electron correlation, the fast removal of an electron from a molecule may create a coherent superposition of cationic states and in this way initiate pure electronic dynamics in which the hole-charge left by the ionization migrates throughout the system on an ultrashort time scale. The coupling to the nuclear motion introduces a decoherence that eventually traps the charge, and crucial questions in the field of attochemistry include how long the electronic coherence lasts and which nuclear degrees of freedom are mostly responsible for the decoherence. Here, we report full-dimensional quantum calculations of the concerted electron-nuclear dynamics following outer-valence ionization of propynamide, which reveal that the pure electronic coherences last only 2-3 fs before being destroyed by the nuclear motion. Our analysis shows that the normal modes that are mostly responsible for the fast electronic decoherence are the symmetric in-plane modes. All other modes have little or no effect on the charge migration. This information can be useful to guide the development of reduced dimensionality models for larger systems or the search for molecules with long coherence times.
Collapse
Affiliation(s)
- J Vester
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - V Despré
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - A I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Coppola F, Nucci M, Marazzi M, Rocca D, Pastore M. Norbornadiene/Quadricyclane System in the Spotlight: The Role of Rydberg States and Dynamic Electronic Correlation in a Solar‐Thermal Building Block. CHEMPHOTOCHEM 2023. [DOI: 10.1002/cptc.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Federico Coppola
- Laboratoire de Physique et Chimie Théoriques (LPCT) Université de Lorraine & CNRS, UMR 7019 54000 Nancy France
| | - Martina Nucci
- Universidad de Alcalá Departamento de Química Analítica Química Física e Ingeniería Química Grupo de Reactividad y Estructura Molecular (RESMOL) Alcalá de Henares Madrid Spain
| | - Marco Marazzi
- Universidad de Alcalá Departamento de Química Analítica Química Física e Ingeniería Química Grupo de Reactividad y Estructura Molecular (RESMOL) Alcalá de Henares Madrid Spain
- Universidad de Alcalá Instituto de Investigación Química ‘‘Andrés M. del Río'' (IQAR) Alcalá de Henares Madrid Spain
| | - Dario Rocca
- Laboratoire de Physique et Chimie Théoriques (LPCT) Université de Lorraine & CNRS, UMR 7019 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT) Université de Lorraine & CNRS, UMR 7019 54000 Nancy France
| |
Collapse
|
9
|
Pradeep A, Varadharajan R, Ramamurthy V. Reversible Photoisomerization of Norbornadiene-Quadricyclane within a Confined Capsule. Photochem Photobiol 2022; 99:624-636. [PMID: 35977794 DOI: 10.1111/php.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
With the desire to develop a sustainable green method to store and release solar energy via a chemical reaction we have examined the well investigated norbornadiene-quadricyclane (NBD-QC) system in water. In this context, we have employed octa acid (OA) as the host that forms a capsule in water. According to 1 H NMR spectra and diffusion constants OA forms a stable 2:2 complex with both NBD and QC and 1:1:2 mixed complex in presence of equal amounts of both NBD and QC. The photoconversion of NBD to QC within the OA capsule is clean without side reactions. In this case OA itself acts as a triplet sensitizer. Recognizing the disadvantage of this supramolecular approach, in the future we plan to look for visible light absorbing sensitizers to perform this conversion. The reverse reaction (QC to NBD) is achieved via electron transfer process with methylene blue as the sensitizer. This reverse reaction is also clean and no side products were detected. The preliminary results reported here provides 'proof of principle' for combining green, sustainable and supramolecular chemistries in the context of solar energy capture and release.
Collapse
Affiliation(s)
- Anu Pradeep
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ramkumar Varadharajan
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - V Ramamurthy
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
10
|
Blavier M, Levine RD, Remacle F. Time evolution of entanglement of electrons and nuclei and partial traces in ultrafast photochemistry. Phys Chem Chem Phys 2022; 24:17516-17525. [PMID: 35838986 DOI: 10.1039/d2cp01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broad in energy optical pulses induce ultrafast molecular dynamics where nuclear degrees of freedom are entangled with electronic ones. We discuss a matrix representation of wave functions of such entangled systems. Singular Value Decomposition (SVD) of this matrix provides a representation as a sum of separable terms. Their weights can be arranged in decreasing order. The representation provided by the SVD is equivalent to a Schmidt decomposition. If there is only one term or if one term is already a good approximation, the system is not entangled. The SVD also provides either an exact or a few term approximation for the partial traces. A simple example, the dynamics of LiH upon ultrafast excitation to several non-adiabatically coupled electronic states, is provided. The major contribution to the entanglement is created during the exit from the Franck Condon region. An additional contribution is the entanglement due to the nuclear motion induced non-adiabatic transitions.
Collapse
Affiliation(s)
- Martin Blavier
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. .,The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry and Biochemistry and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. .,The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
11
|
Heindl M, González L. Taming Disulfide Bonds with Laser Fields. Nonadiabatic Surface-Hopping Simulations in a Ruthenium Complex. J Phys Chem Lett 2022; 13:1894-1900. [PMID: 35175761 PMCID: PMC8900122 DOI: 10.1021/acs.jpclett.1c04143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Laser control of chemical reactions is a challenging field of research. In particular, the theoretical description of coupled electronic and nuclear motion in the presence of laser fields is not a trivial task and simulations are mostly restricted to small systems or molecules treated within reduced dimensionality. Here, we demonstrate how the excited state dynamics of [Ru(S-Sbpy)(bpy)2]2+ can be controlled using explicit laser fields in the context of fewest-switches surface hopping. In particular, the transient properties along the excited state dynamics leading to population of the T1 minimum energy structure are exploited to define simple laser fields capable of slowing and even completely stopping the onset of S-S bond dissociation. The use of a linear vibronic coupling model to parametrize the potential energy surfaces showcases the strength of the surface-hopping methodology to study systems including explicit laser fields using many nuclear degrees of freedom and a large amount of close-lying electronic excited states.
Collapse
|
12
|
Rossi GM, Mainz RE, Scheiba F, Silva-Toledo MA, Kubullek M, Kärtner FX. Controlling water-window high-harmonic generation with sub-cycle synthesized waveforms. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226613030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We present the first results concerning synthesizer-driven high-harmonic generation that reach the water-window region. This approach holds the promise of offering greater spectral tunability in the generation of isolated attosecond pulses and at the same time of achieving higher photon-flux, required for attosecondresolved soft X-ray transient absorption experiments.
Collapse
|
13
|
Merritt ICD, Jacquemin D, Vacher M. Attochemistry: Is Controlling Electrons the Future of Photochemistry? J Phys Chem Lett 2021; 12:8404-8415. [PMID: 34436903 DOI: 10.1021/acs.jpclett.1c02016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling matter with light has always been a great challenge, leading to the ever-expanding field of photochemistry. In addition, since the first generation of light pulses of attosecond (1 as = 10-18 s) duration, a great deal of effort has been devoted to observing and controlling electrons on their intrinsic time scale. Because of their short duration, attosecond pulses have a large spectral bandwidth populating several electronically excited states in a coherent manner, i.e., an electronic wavepacket. Because of interference, such a wavepacket has a new electronic distribution implying a potentially different and totally new reactivity as compared to traditional photochemistry, leading to the novel concept of "attochemistry". This nascent field requires the support of theory right from the start. In this Perspective, we discuss the opportunities offered by attochemistry, the related challenges, and the current and future state-of-the-art developments in theoretical chemistry needed to model it accurately.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| |
Collapse
|
14
|
Palmer MH, Hoffmann SV, Jones NC, Coreno M, de Simone M, Grazioli C, Aitken RA. The vacuum ultraviolet absorption spectrum of norbornadiene: Vibrational analysis of the singlet and triplet valence states of norbornadiene by configuration interaction and density functional calculations. J Chem Phys 2021; 155:034308. [PMID: 34293869 DOI: 10.1063/5.0053962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A synchrotron-based vacuum ultraviolet (VUV) absorption spectrum of norbornadiene (NBD) is reported, and the extensive vibrational structure obtained has been analyzed. The previously known 5b13s-Rydberg state has been reinterpreted by comparison with our recent high-resolution photoelectron spectral analysis of the X2B1 ionic state. Additional vibrational details in the region of this Rydberg state are observed in its VUV spectrum when compared with the photoelectron 2B1 ionic state; this is attributed to the underlying valence state structure in the VUV. Valence and Rydberg state energies have been obtained by configuration interaction and time-dependent density functional theoretical methods. Several low-lying singlet valence states, especially those that arise from ππ* excitations, conventionally termed NV1 to NV4, have been examined in detail. Their Franck-Condon (FC) and Herzberg-Teller (HT) profiles have been investigated and fitted to the VUV spectrum. Estimates of the experimental 00 band positions have been made from these fits. The anomaly of the observed UV absorption by the 1A2 state of NBD is attributed to HT effects. Generally, the HT components are less than 10% of the FC terms. The calculated 5b13s lowest Rydberg state also shows a low level of HT components. The observed electron impact spectra of NBD have been analyzed in detail in terms of triplet states.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Marcello Coreno
- ISM-CNR, Instituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | | | | | - R Alan Aitken
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST Scotland, United Kingdom
| |
Collapse
|
15
|
Fouda AEA, Ho PJ. Site-specific generation of excited state wavepackets with high-intensity attosecond x rays. J Chem Phys 2021; 154:224111. [PMID: 34241215 DOI: 10.1063/5.0050891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High-intensity attosecond x rays can produce coherent superpositions of valence-excited states through two-photon Raman transitions. The broad-bandwidth, high-field nature of the pulses results in a multitude of accessible excited states. Multiconfigurational quantum chemistry with the time-dependent Schrödinger equation is used to examine population transfer dynamics in stimulated x-ray Raman scattering of the nitric oxide oxygen and nitrogen K-edges. Two pulse schemes initiate wavepackets of different characters and demonstrate how chemical differences between core-excitation pathways affect the dynamics. The population transfer to valence-excited states is found to be sensitive to the electronic structure and pulse conditions, highlighting complexities attributed to the Rabi frequency. The orthogonally polarized two-color-pulse setup has increased selectivity while facilitating longer, less intense pulses than the one-pulse setup. Population transfer in the 1s → Rydberg region is more effective but less selective at the nitrogen K-edge; the selectivity is reduced by double core-excited states. Result interpretation is aided by resonant inelastic x-ray scattering maps.
Collapse
Affiliation(s)
- Adam E A Fouda
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, USA
| | - Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, USA
| |
Collapse
|
16
|
Gonçalves CEM, Levine RD, Remacle F. Ultrafast geometrical reorganization of a methane cation upon sudden ionization: an isotope effect on electronic non-equilibrium quantum dynamics. Phys Chem Chem Phys 2021; 23:12051-12059. [PMID: 34008662 DOI: 10.1039/d1cp01029h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast structural, Jahn-Teller (JT) driven, electronic coherence mediated quantum dynamics in the CH4+ and CD4+ cations that follows sudden ionization using an XUV attopulse exhibits a strong isotope effect. The JT effect makes the methane cation unstable in the Td geometry of the neutral molecule. Upon the sudden ionization the cation is produced in a coherent superposition of three electronic states that are strongly coupled and neither is in equilibrium with the nuclei. In the ground state of the cation the few femtosecond structural rearrangement leads first to a geometrically less distorted D2d minimum followed by a geometrical reorganization to a shallow C2v minimum. The dynamics is computed for an ensemble of 8000 ions randomly oriented with respect to the polarization of the XUV pulse. The ratio, about 3, of the CD4+ to CH4+ autocorrelation functions, is in agreement with experimental measurements of high harmonic spectra. The high value of the ratio is attributed to the faster electronic coherence dynamics in CH4+.
Collapse
Affiliation(s)
- Cayo E M Gonçalves
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium.
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|