1
|
Sun S, Yao H, Pan J, Xian Z. The bonded interfacial layer structure of α-Al2O3 (0001)/water at different pH values studied by sum frequency vibrational spectroscopy. J Chem Phys 2024; 161:214708. [PMID: 39641355 DOI: 10.1063/5.0235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Oxide/water interfaces are ubiquitous, with alumina/water drawing particular interest due to its environmental and industrial applications. Understanding the interfacial structure at the molecular level is crucial for many physical and chemical processes occurring there. However, the exact structure of interfacial H-bonded network at different pH values remains unclear. Here, sum-frequency vibrational spectroscopy in the OH stretch region was employed to study α-Al2O3 (0001)/water interface at different pH values, while suppressing the contribution of the diffusion layer by adding salts. The experimental results revealed although the variation of pH can charge the surface, it has little impact on the structure of the bonded interfacial layer (BIL). The interaction between alumina and water is mainly governed by weak hydrogen bonds. Furthermore, the templating effect of α-Al2O3 (0001) on the interfacial H-bonded network was observed, with the O-H stretch mode of ∼3430 cm-1 exhibiting anisotropy consistent with the (0001) surface symmetry. These findings indicate that the BIL structure on Al2O3 (0001) is predominantly influenced by the surface atom configuration, and the effect of charge changes induced by pH on the BIL structure is negligible.
Collapse
Affiliation(s)
- Shumei Sun
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Huanzhen Yao
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Jiabao Pan
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Zhenzhe Xian
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
Ishiyama T. Energy relaxation dynamics of hydrogen-bonded OH vibration conjugated with free OH bond at an air/water interface. J Chem Phys 2021; 155:154703. [PMID: 34686042 DOI: 10.1063/5.0069618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrational energy relaxation dynamics of the excited hydrogen-bonded (H-bonded) OH conjugated with free OH (OD) at an air/water (for both pure water and isotopically diluted water) interface are elucidated via non-equilibrium ab initio molecular dynamics (NE-AIMD) simulations. The calculated results are compared with those of the excited H-bonded OH in bulk liquid water reported previously. In the case of pure water, the relaxation timescale (vibrational lifetime) of the excited H-bonded OH at the interface is T1 = 0.13 ps, which is slightly larger than that in the bulk (T1 = 0.11 ps). Conversely, in the case of isotopically diluted water, the relaxation timescale of T1 = 0.74 ps in the bulk decreases to T1 = 0.26 ps at the interface, suggesting that the relaxation dynamics of the H-bonded OH are strongly dependent on the surrounding H-bond environments particularly for the isotopically diluted conditions. The relaxation paths and their rates are estimated by introducing certain constraints on the vibrational modes except for the target path in the NE-AIMD simulation to decompose the total energy relaxation rate into contributions to possible relaxation pathways. It is found that the main relaxation pathway in the case of pure water is due to intermolecular OH⋯OH vibrational coupling, which is similar to the relaxation in the bulk. In the case of isotopically diluted water, the main pathway is due to intramolecular stretch and bend couplings, which show more efficient relaxation than in the bulk because of strong H-bonding interactions specific to the air/water interface.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
5
|
Ishiyama T. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water. J Chem Phys 2021; 154:204502. [PMID: 34241149 DOI: 10.1063/5.0050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational energy relaxation paths of hydrogen-bonded (H-bonded) OH excited in pure water and in isotopically diluted (deuterated) water are elucidated via non-equilibrium ab initio molecular dynamics (NE-AIMD) simulations. The present study extends the previous NE-AIMD simulation for the energy relaxation of an excited free OH vibration at an air/water interface [T. Ishiyama, J. Chem. Phys. 154, 104708 (2021)] to the energy relaxation of an excited H-bonded OH vibration in bulk water. The present simulation shows that the excited OH vibration in pure water dissipates its energy on a timescale of 0.1 ps, whereas that in deuterated water relaxes on a timescale of 0.7 ps, consistent with the experimental observations. To decompose these relaxation energies into the components due to intramolecular and intermolecular couplings, constraints are introduced on the vibrational modes except for the target path in the NE-AIMD simulation. In the case of pure water, 80% of the total relaxation is attributed to the pathway due to the resonant intermolecular OH⋯OH stretch coupling, and the remaining 17% and 3% are attributed to intramolecular couplings with the bend overtone and with the conjugate OH stretch, respectively. This result strongly supports a significant role for the Förster transfer mechanism of pure water due to the intermolecular dipole-dipole interactions. In the case of deuterated water, on the other hand, 36% of the total relaxation is due to the intermolecular stretch coupling, and all the remaining 64% arises from coupling with the intramolecular bend overtone.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|