1
|
Wang Y, Li B, Xue B, Libretto N, Xie Z, Shen H, Wang C, Raciti D, Marinkovic N, Zong H, Xie W, Li Z, Zhou G, Vitek J, Chen JG, Miller J, Wang G, Wang C. CO electroreduction on single-atom copper. SCIENCE ADVANCES 2023; 9:eade3557. [PMID: 37494432 DOI: 10.1126/sciadv.ade3557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Electroreduction of carbon dioxide (CO2) or carbon monoxide (CO) toward C2+ hydrocarbons such as ethylene, ethanol, acetate and propanol represents a promising approach toward carbon-negative electrosynthesis of chemicals. Fundamental understanding of the carbon─carbon (C-C) coupling mechanisms in these electrocatalytic processes is the key to the design and development of electrochemical systems at high energy and carbon conversion efficiencies. Here, we report the investigation of CO electreduction on single-atom copper (Cu) electrocatalysts. Atomically dispersed Cu is coordinated on a carbon nitride substrate to form high-density copper─nitrogen moieties. Chemisorption, electrocatalytic, and computational studies are combined to probe the catalytic mechanisms. Unlike the Langmuir-Hinshelwood mechanism known for copper metal surfaces, the confinement of CO adsorption on the single-copper-atom sites enables an Eley-Rideal type of C-C coupling between adsorbed (*CO) and gaseous [CO(g)] carbon moxide molecules. The isolated Cu sites also selectively stabilize the key reaction intermediates determining the bifurcation of reaction pathways toward different C2+ products.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bin Xue
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Nicole Libretto
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Canhui Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Raciti
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Han Zong
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wenjun Xie
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziyuan Li
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeff Vitek
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Jeffery Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Maslowsky E. Vibrational and computational data for homoleptic main-group element carbonyl complexes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
3
|
Rossomme E, Cunha LA, Li W, Chen K, McIsaac AR, Head-Gordon T, Head-Gordon M. The Good, the Bad, and the Ugly: Pseudopotential Inconsistency Errors in Molecular Applications of Density Functional Theory. J Chem Theory Comput 2023; 19:2827-2841. [PMID: 37156013 DOI: 10.1021/acs.jctc.3c00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The pseudopotential (PP) approximation is one of the most common techniques in computational chemistry. Despite its long history, the development of custom PPs has not tracked with the explosion of different density functional approximations (DFAs). As a result, the use of PPs with exchange/correlation models for which they were not developed is widespread, although this practice is known to be theoretically unsound. The extent of PP inconsistency errors (PPIEs) associated with this practice has not been systematically explored across the types of energy differences commonly evaluated in chemical applications. We evaluate PPIEs for a number of PPs and DFAs across 196 chemically relevant systems of both transition-metal and main-group elements, as represented by the W4-11, TMC34, and S22 data sets. Near the complete basis set limit, these PPs are found to cleanly approach all-electron (AE) results for noncovalent interactions but introduce root-mean-squared errors (RMSEs) upwards of 15 kcal mol-1 into predictions of covalent bond energies for a number of popular DFAs. We achieve significant improvements through the use of empirical atom- and DFA-specific PP corrections, indicating considerable systematicity of the PPIEs. The results of this work have implications for chemical modeling in both molecular contexts and for DFA design, which we discuss.
Collapse
Affiliation(s)
- Elliot Rossomme
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanlu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kaixuan Chen
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexandra R McIsaac
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Meng Y, Huang H, Zhang Y, Cao Y, Lu H, Li X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms. Front Chem 2023; 11:1172146. [PMID: 37056353 PMCID: PMC10086683 DOI: 10.3389/fchem.2023.1172146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Excess of carbon dioxide (CO2) in the atmosphere poses a significant threat to the global climate. Therefore, the electrocatalytic carbon dioxide reduction reaction (CO2RR) is important to reduce the burden on the environment and provide possibilities for developing new energy sources. However, highly active and selective catalysts are needed to effectively catalyze product synthesis with high adhesion value. Single-atom catalysts (SACs) and double-atom catalysts (DACs) have attracted much attention in the field of electrocatalysis due to their high activity, strong selectivity, and high atomic utilization. This review summarized the research progress of electrocatalytic CO2RR related to different types of SACs and DACs. The emphasis was laid on the catalytic reaction mechanism of SACs and DACs using the theoretical calculation method. Furthermore, the influences of solvation and electrode potential were studied to simulate the real electrochemical environment to bridge the gap between experiments and computations. Finally, the current challenges and future development prospects were summarized and prospected for CO2RR to lay the foundation for the theoretical research of SACs and DACs in other aspects.
Collapse
Affiliation(s)
- Yuxiao Meng
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongjie Huang
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - You Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Hanfeng Lu
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| |
Collapse
|
5
|
Zhu Q, Murphy CJ, Baker LR. Opportunities for Electrocatalytic CO 2 Reduction Enabled by Surface Ligands. J Am Chem Soc 2022; 144:2829-2840. [PMID: 35137579 DOI: 10.1021/jacs.1c11500] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To achieve high selectivity in enzyme catalysis, nature carefully controls both the catalyst active site and the pocket or environment that mediates access and the geometry of a reactant. Despite the many advantages of heterogeneous catalysis, active sites on a surface are rarely defined with atomic precision, making it difficult to control reaction selectivity with the molecular precision of homogeneous systems. In colloidal nanoparticle synthesis, structural control is accomplished using a surface ligand or capping layer that stabilizes a specific particle morphology and prevents nanoparticle aggregation. Usually, these surface ligands are considered detrimental for catalysis because they occupy otherwise active surface sites. However, a number of examples have shown that surface ligands can play a beneficial role in defining the catalytic environment and enhancing performance by a variety of mechanisms. This perspective summarizes recent advances and opportunities using surface ligands to enhance the performance of nanocatalysts for electrochemical CO2 reduction. Several mechanisms are discussed, including selective permeability, modulating interfacial solvation structure and electric fields, chemical activation, and templating active site selection. These examples inform strategies and point to emerging opportunities to design nanocatalysts toward molecular level control of electrochemical CO2 conversion.
Collapse
Affiliation(s)
- Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Bajaj A, Kulik HJ. Eliminating Delocalization Error to Improve Heterogeneous Catalysis Predictions with Molecular DFT + U. J Chem Theory Comput 2022; 18:1142-1155. [PMID: 35081711 DOI: 10.1021/acs.jctc.1c01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Approximate semilocal density functional theory (DFT) is known to underestimate surface formation energies yet paradoxically overbind adsorbates on catalytic transition-metal oxide surfaces due to delocalization error. The low-cost DFT + U approach only improves surface formation energies for early transition-metal oxides or adsorption energies for late transition-metal oxides. In this work, we demonstrate that this inefficacy arises due to the conventional usage of metal-centered atomic orbitals as projectors within DFT + U. We analyze electron density rearrangement during surface formation and O atom adsorption on rutile transition-metal oxides to highlight that a standard DFT + U correction fails to tune properties when the corresponding density rearrangement is highly delocalized across both metal and oxygen sites. To improve both surface properties simultaneously while retaining the simplicity of a single-site DFT + U correction, we systematically construct multi-atom-centered molecular-orbital-like projectors for DFT + U. We demonstrate this molecular DFT + U approach for tuning adsorption energies and surface formation energies of minimal two-dimensional models of representative early (i.e., TiO2) and late (i.e., PtO2) transition-metal oxides. Molecular DFT + U simultaneously corrects adsorption energies and surface formation energies of multilayer models of rutile TiO2(110) and PtO2(110) to resolve the paradoxical description of surface stability and surface reactivity of semilocal DFT.
Collapse
Affiliation(s)
- Akash Bajaj
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Lee J, Feng X, Cunha LA, Gonthier JF, Epifanovsky E, Head-Gordon M. Approaching the basis set limit in Gaussian-orbital-based periodic calculations with transferability: Performance of pure density functionals for simple semiconductors. J Chem Phys 2021; 155:164102. [PMID: 34717349 PMCID: PMC8556001 DOI: 10.1063/5.0069177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Simulating solids with quantum chemistry methods and Gaussian-type orbitals (GTOs) has been gaining popularity. Nonetheless, there are few systematic studies that assess the basis set incompleteness error (BSIE) in these GTO-based simulations over a variety of solids. In this work, we report a GTO-based implementation for solids and apply it to address the basis set convergence issue. We employ a simple strategy to generate large uncontracted (unc) GTO basis sets that we call the unc-def2-GTH sets. These basis sets exhibit systematic improvement toward the basis set limit as well as good transferability based on application to a total of 43 simple semiconductors. Most notably, we found the BSIE of unc-def2-QZVP-GTH to be smaller than 0.7 mEh per atom in total energies and 20 meV in bandgaps for all systems considered here. Using unc-def2-QZVP-GTH, we report bandgap benchmarks of a combinatorially designed meta-generalized gradient approximation (mGGA) functional, B97M-rV, and show that B97M-rV performs similarly (a root-mean-square-deviation of 1.18 eV) to other modern mGGA functionals, M06-L (1.26 eV), MN15-L (1.29 eV), and Strongly Constrained and Appropriately Normed (SCAN) (1.20 eV). This represents a clear improvement over older pure functionals such as local density approximation (1.71 eV) and Perdew-Burke-Ernzerhof (PBE) (1.49 eV), although all these mGGAs are still far from being quantitatively accurate. We also provide several cautionary notes on the use of our uncontracted bases and on future research on GTO basis set development for solids.
Collapse
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027,, USA
| | | | - Leonardo A. Cunha
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Jérôme F. Gonthier
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Li WL, Lininger CN, Chen K, Vaissier Welborn V, Rossomme E, Bell AT, Head-Gordon M, Head-Gordon T. Critical Role of Thermal Fluctuations for CO Binding on Electrocatalytic Metal Surfaces. JACS AU 2021; 1:1708-1718. [PMID: 34723274 PMCID: PMC8549055 DOI: 10.1021/jacsau.1c00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 06/01/2023]
Abstract
This work considers the evaluation of density functional theory (DFT) when comparing against experimental observations of CO binding trends on the strong binding Pt(111) and intermediate binding Cu(111) and for weak binding Ag(111) and Au(111) surfaces important in electrocatalysis. By introducing thermal fluctuations using appropriate statistical mechanical NVT and NPT ensembles, we find that the RPBE and B97M-rV DFT functionals yield qualitatively better metal surface strain trends and CO enthalpies of binding for Cu(111) and Pt(111) than found at 0 K, thereby correcting the overbinding by 0.2 to 0.3 eV to yield better agreement with the enthalpies determined from experiment. The importance of dispersion effects are manifest for the weak CO binding Ag(111) and Au(111) surfaces at finite temperatures in which the RPBE functional does not bind CO at all, while the B97M-rV functional shows that the CO-metal interactions are a mixture of chemisorbed and physisorbed species with binding enthalpies that are within ∼0.05 eV of experiment. Across all M(111) surfaces, we show that the B97M-rV functional consistently predicts the correct atop site preference for all metals due to thermally induced surface distortions that preferentially favor the undercoordinated site. This study demonstrates the need to fully account for finite temperature fluctuations to make contact with the binding enthalpies from surface science experiments and electrocatalysis applications.
Collapse
Affiliation(s)
- Wan-Lu Li
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
| | - Christianna N. Lininger
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kaixuan Chen
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
| | - Valerie Vaissier Welborn
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 26067, United States
| | - Elliot Rossomme
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Density functional study on formic acid decomposition on Pd(111) surface: a revisit and comparison with other density functional methods. J Mol Model 2021; 27:285. [PMID: 34524545 DOI: 10.1007/s00894-021-04903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The mechanism of formic acid decomposition on the Pd(111) surface has been investigated by several theoretical methods in previous studies, including PBE and PW91. These results indicated that the mechanism is different from different methods, and even by using the same method (i.e., PBE), the mechanism is also different. In this study, we have revisited the formic acid decomposition on Pd(111) surface by using another density functional RPBE and by including van der Waals interaction which is neglected in the previous studies. Our results showed that the formic acid is decomposed via O-H bond cleavage to form bi-HCOO*, and the most favorable pathway is HCOOH* → bi-HCOO* + H* → CO2* + 2H*. The energy barrier is 0.55 eV at the rate-determining step. This conclusion is consistent with one of the PBE study. This demonstrated that computational methods have a great influence on the reaction mechanism, and care should be taken in selecting the appropriate computational methods.
Collapse
|
10
|
Ahmed M, Blum M, Crumlin EJ, Geissler PL, Head-Gordon T, Limmer DT, Mandadapu KK, Saykally RJ, Wilson KR. Molecular Properties and Chemical Transformations Near Interfaces. J Phys Chem B 2021; 125:9037-9051. [PMID: 34365795 DOI: 10.1021/acs.jpcb.1c03756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The properties of bulk water and aqueous solutions are known to change in the vicinity of an interface and/or in a confined environment, including the thermodynamics of ion selectivity at interfaces, transition states and pathways of chemical reactions, and nucleation events and phase growth. Here we describe joint progress in identifying unifying concepts about how air, liquid, and solid interfaces can alter molecular properties and chemical reactivity compared to bulk water and multicomponent solutions. We also discuss progress made in interfacial chemistry through advancements in new theory, molecular simulation, and experiments.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ethan J Crumlin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip L Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kranthi K Mandadapu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard J Saykally
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|