1
|
Singh K, Lee KH, Peláez D, Bande A. Accelerating wavepacket propagation with machine learning. J Comput Chem 2024; 45:2360-2373. [PMID: 39031712 DOI: 10.1002/jcc.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024]
Abstract
In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time-dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed-up from the FNO method allows for its combination with the Markov-chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.
Collapse
Affiliation(s)
- Kanishka Singh
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ka Hei Lee
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Daniel Peláez
- CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| | - Annika Bande
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
2
|
Ariyageadsakul P, Baeck KK. Dynamics of FHCl Including Two Bidirectional Dissociation Channels: Comparative Study Using Quantum Nuclear Wavepackets and Semiclassical Trajectory Surface Hopping. J Phys Chem A 2024; 128:8659-8671. [PMID: 39321032 DOI: 10.1021/acs.jpca.4c04346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The dynamics starting from the charge transfer excited state of neutral FHCl includes two bidirectional dissociation channels, producing "FH" and "Cl" fragments or "F" and "HCl" fragments by electron-transfer (ET) or proton-transfer (PT) processes, respectively. The quantum features of its dynamics were studied using the quantum dynamics of nuclear wavepacket propagation and the semiclassical dynamics of trajectory surface hopping propagation. The MS-CASPT2(17,11)/aug-cc-pVTZ method was used for calculating the energies of electronic states. Two critical quantum features identified in previous studies were the dominance of PT over ET and the ∼80 fs time gap between the onset of the earlier PT and the later ET processes. These features, in contrast to classical anticipation, were confirmed again, and their classical interpretations were developed based on the results of semiclassical dynamics. The relative location of nonadiabatic regions with respect to the starting point of dynamics and the activation of angular motion altering the HFCl angle play crucial roles in governing the two quantum features.
Collapse
Affiliation(s)
- Pinit Ariyageadsakul
- Department of Chemistry, National Gangneung-Wonju University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Kyoung Koo Baeck
- Department of Chemistry, National Gangneung-Wonju University, Gangneung, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
3
|
Mukherjee S, Saha S, Ghosh S, Adhikari S, Sathyamurthy N, Baer M. Quasi-Classical Trajectory Calculations on a Two-State Potential Energy Surface Including Nonadiabatic Coupling Terms as Friction for D + + H 2 Collisions. J Phys Chem A 2024; 128:7691-7702. [PMID: 39172694 DOI: 10.1021/acs.jpca.4c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Akin to the traditional quasi-classical trajectory method for investigating the dynamics on a single adiabatic potential energy surface for an elementary chemical reaction, we carry out the dynamics on a 2-state ab initio potential energy surface including nonadiabatic coupling terms as friction terms for D+ + H2 collisions. It is shown that the resulting dynamics correctly accounts for nonreactive charge transfer, reactive non-charge transfer and reactive charge transfer processes. In addition, it leads to the formation of triatomic DH2+ species as well.
Collapse
Affiliation(s)
- Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal 462003, India
| | - Swagato Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sandip Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayanasami Sathyamurthy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli 140306, India
| | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Huang KY, Li GY, Liang X, Li K, Li L, Cui G, Liu XY. "On-the-Fly" Nonadiabatic Dynamics Simulation on the Ultrafast Photoisomerization of a Molecular Photoswitch Iminothioindoxyl: An RMS-CASPT2 Investigation. J Phys Chem A 2024; 128:7145-7157. [PMID: 39145596 DOI: 10.1021/acs.jpca.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Iminothioindoxyl (ITI) is a new class of photoswitch that exhibits many excellent properties including well-separated absorption bands in the visible region for both conformers, ultrafast Z to E photoisomerization as well as the millisecond reisomerization at room temperature for the E isomer, and switchable ability in both solids and various solvents. However, the underlying ultrafast photoisomerization mechanism at the atomic level remains unclear. In this work, we have employed a combination of high-level RMS-CASPT2-based static electronic structure calculations and nonadiabatic dynamics simulations to investigate the ultrafast photoisomerization dynamics of ITI. Based on the minimum-energy structures, minimum-energy conical intersections, linear interpolation internal coordinate paths, and nonadiabatic dynamics simulations, the overall photoisomerization scenario of ITI upon excitation is established. Upon excitation around 416 nm, the molecule will be excited to the S2 state considering its close energy to the experimentally measured absorption maximum and larger oscillator strength, from which ultrafast decay of S2 to S1 state can take place efficiently with a time constant of 62 fs. However, the photoisomerization is not likely to complete in the S2 state since the dihedral associated with the Z to E isomerization changes little during the relaxation. Upon relaxing to the S1 state, the molecule will decay to the S0 state ultrafast with a time constant of 232 fs. In contrast, the decay of the S1 state is important for the isomerization considering that the dihedral related to the isomerization of the hopping structures is close to 90°. Therefore, the S1/S0 intersection region should be important for the isomerization of ITI. Arriving at the S0 state, the molecule can either go back to the original Z reactant or isomerize to the E products. At the end of the 500 fs simulation time, the E configuration accounts for nearly 37% of the final structures. Moreover, the photoisomerization mechanism is different from the isomerization mechanism in the ground state; i.e., instead of the inversion mechanism in the ground state, the photoisomerization prefers the rotation mechanism. Our results not only agree well with previous experimental studies but also provide some novel insights that could be helpful for future improvements in the performance of the ITI photoswitches.
Collapse
Affiliation(s)
- Kai-Yue Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Gao-Yi Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoqin Liang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Kai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
5
|
Li W, Zhang Z, Niu X, He D, Xing W, Zhang Y. Diabatic Potential Energy Surfaces of SrH 2+ and Dynamics Studies of the Sr +(5s 2S) + H 2 Reaction. J Phys Chem A 2024; 128:6677-6684. [PMID: 39093206 DOI: 10.1021/acs.jpca.4c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Based on the ab initio energy points of both ground and excited states, a neural network fitting method combined with a specific function was successfully used to construct the diabatic potential energy surfaces (PESs) of the SrH2+ system. The topographical features of the diabatic PESs were examined in detail. The results indicate that the nonadiabatic transition characteristics between ground and excited states are accurately described by the newly constructed diabatic PESs. To verify the validity and applicability of the diabatic PESs, as well as the nonadiabatic effects during the reaction process, the quantum dynamics studies of the Sr+(5s2S) + H2 reaction were performed based on both adiabatic and diabatic PESs. The dynamics results indicate that adiabatic dynamics results are dozens of times larger than those of nonadiabatic. This illustrates the significant effect of nonadiabaticity, indicating that adiabatic dynamics results often overestimate the actual values. The integral cross sections (ICSs) were calculated and compared with the experimental data. The diabatic ICSs are in good agreement with the experimental results. The reasonable dynamics results indicate that the newly constructed diabatic PESs are suitable for the relevant dynamics studies.
Collapse
Affiliation(s)
- Wentao Li
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Zhijun Zhang
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Xianghong Niu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
| | - Di He
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Wei Xing
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yong Zhang
- Department of Physics, Tonghua Normal University, Tonghua ,Jilin134002, China
| |
Collapse
|
6
|
Yang Z, Cao F, Cheng H, Liu S, Sun J. A Globally Accurate Neural Network Potential Energy Surface and Quantum Dynamics Studies on Be +( 2S) + H 2/D 2 → BeH +/BeD + + H/D Reactions. Molecules 2024; 29:3436. [PMID: 39065017 PMCID: PMC11487451 DOI: 10.3390/molecules29143436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical reactions between Be+ ions and H2 molecules have significance in the fields of ultracold chemistry and astrophysics, but the corresponding dynamics studies on the ground-state reaction have not been reported because of the lack of a global potential energy surface (PES). Herein, a globally accurate ground-state BeH2+ PES is constructed using the neural network model based on 18,657 ab initio points calculated by the multi-reference configuration interaction method with the aug-cc-PVQZ basis set. On the newly constructed PES, the state-to-state quantum dynamics calculations of the Be+(2S) + H2(v0 = 0; j0 = 0) and Be+(2S) + D2(v0 = 0; j0 = 0) reactions are performed using the time-dependent wave packet method. The calculated results suggest that the two reactions are dominated by the complex-forming mechanism and the direct abstraction process at relatively low and high collision energies, respectively, and the isotope substitution has little effect on the reaction dynamics characteristics. The new PES can be used to further study the reaction dynamics of the BeH2+ system, such as the effects of rovibrational excitations and alignment of reactant molecules, and the present dynamics data could provide an important reference for further experimental studies at a finer level.
Collapse
Affiliation(s)
- Zijiang Yang
- School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | |
Collapse
|
7
|
Liu XY, Wang SR, Fang WH, Cui G. Nuclear Quantum Effects on Nonadiabatic Dynamics of a Green Fluorescent Protein Chromophore Analogue: Ring-Polymer Surface-Hopping Simulation. J Chem Theory Comput 2024; 20:3426-3439. [PMID: 38656202 DOI: 10.1021/acs.jctc.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, we have used the "on-the-fly" ring-polymer surface-hopping simulation method with the centroid approximation (RPSH-CA), in combination with the multireference OM2/MRCI electronic structure calculations to study the photoinduced dynamics of a green fluorescent protein (GFP) chromophore analogue in the gas phase, i.e., o-HBI, at 50, 100, and 300 K with 1, 5, 10, and 15 beads (3600 1 ps trajectories). The electronic structure calculations identified five new minimum-energy conical intersection (MECI) structures, which, together with the previous one, play crucial roles in the excited-state decay dynamics of o-HBI. It is also found that the excited-state intramolecular proton transfer (ESIPT) occurs in an ultrafast manner and is completed within 20 fs in all the simulation conditions because there is no barrier associated with this ESIPT process in the S1 state. However, the other excited-state dynamical results are strongly related to the number of beads. At 50 and 100 K, the nuclear quantum effects (NQEs) are very important; therefore, the excited-state dynamical results change significantly with the bead number. For example, the S1 decay time deduced from time-dependent state populations becomes longer as the bead number increases. Nevertheless, an essentially convergent trend is observed when the bead number is close to 10. In contrast, at 300 K, the NQEs become weaker and the above dynamical results converge very quickly even with 1 bead. Most importantly, the NQEs seriously affect the excited-state decay mechanism of o-HBI. At 50 and 100 K, most trajectories decay to the S0 state via perpendicular keto MECIs, whereas, at 300 K, only twisted keto MECIs are responsible for the excited-state decay. The present work not only comprehensively explores the temperature-dependent photoinduced dynamics of o-HBI, but also demonstrates the importance and necessity of NQEs in nonadiabatic dynamics simulations, especially at relatively low temperatures.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Sheng-Rui Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Sahoo J, Mahapatra S. Electronic nonadiabatic effects in the state-to-state dynamics of the H + H 2 → H 2 + H exchange reaction with a vibrationally excited reagent. Phys Chem Chem Phys 2023; 25:28309-28325. [PMID: 37840347 DOI: 10.1039/d3cp02409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Out of the many major breakthroughs that the hydrogen-exchange reaction has led to, electronic nonadiabatic effects that are mainly due to the geometric phase has intrigued many. In this work we investigate such effects in the state-to-state dynamics of the H + H2 (v = 3, 4, j = 0) → H2 (v', j') + H reaction with a vibrationally excited reagent at energies corresponding to thermal conditions. The dynamical calculations are performed by a time-dependent quantum mechanical method both on the lower adiabatic potential energy surface (PES) and also using a two-states coupled diabatic theoretical model to explicitly include all the nonadiabatic couplings present in the 1E' ground electronic manifold of the H3 system. The nonadiabatic couplings are considered here up to the quadratic term; however, the effect of the latter on the reaction dynamics is found to be very small. Adiabatic population analysis showed a minimal participation of the upper adiabatic surface even for the vibrationally excited reagent. A strong nonadiabatic effect appears in the state-to-state reaction probabilities and differential cross sections (DCSs). This effect is manifested as "out-of-phase" oscillations in the DCSs between the results of the uncoupled and coupled surface situations. The oscillations persist as a function of both scattering angle and collision energy in both the backward and forward scattering regions. The origins of these oscillations are examined in detail. The oscillations that appear in the forward direction are found to be different from those due to glory scattering, where the latter showed a negligibly small nonadiabatic effect. The nonadiabatic effects are reduced to a large extent when summed over all product quantum states, in addition to the cancellation due to integration over the scattering angle and partial wave summation.
Collapse
Affiliation(s)
- Jayakrushna Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India.
| | - S Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
9
|
Structure and dynamics of electronically excited molecular systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Adhikari S, Baer M, Sathyamurthy N. HeH 2+: structure and dynamics. INT REV PHYS CHEM 2022. [DOI: 10.1080/0144235x.2022.2037883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
11
|
Non-adiabatic Couplings Induced Complex-forming Mechanism in the H+MgH +→Mg ++H 2 Reaction. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|