1
|
Hazra S, Naskar K, Adhikari S, Varandas AJC. Ortho-Para Conversion for H + + H 2 Collision in Low Temperature: A Fully Close-Coupled Time-Dependent Wave Packet Study. J Phys Chem A 2024; 128:8833-8844. [PMID: 39377641 DOI: 10.1021/acs.jpca.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The collision-induced rate coefficients of ortho-para conversion for the H+ + H2 reaction provide accurate information to probe the lifetime of cold environments in interstellar media. Rotationally resolved reaction probabilities are calculated at the low collision energy regime (0 < Ecol ≤ 0.3 eV) by employing the coupled three-dimensional (3D) time-dependent wave packet (TDWP) formalism in hyperspherical coordinates on a recently constructed ab initio ground adiabatic potential energy surface of H3+ [J. Chem. Phys. 2014, 141, 204306] for the process H+ + H2 (v = 0, j = 0-5) → H+ + H2 (v' = 0, j'). Cross-sections are then computed from the converged reaction probabilities as a function of total angular momentum (J) over the same energy regime and subsequently employed to obtain the rate constants for the ortho-to-para (O-P) and para-to-ortho (P-O) conversions and their ratio. The ratio of ortho-para conversion shows (a) appropriate convergence with the inclusion of a higher number of initial rotational states as well as a reasonable agreement with the results from a quantum statistical method and (b) a peak at lower temperature that could be due to the available collision energy for transitions involving lower rotational states (j = 0 → j' = 1).
Collapse
Affiliation(s)
- Saikat Hazra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - António J C Varandas
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitória, Brazil
- Coimbra Chemistry Centre and Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Chen BJ, Pradhan E, Nooijen M, Zeng T. Adiabat-to-Diabat Angle in Seam Space: Renner-Teller-Type and Pseudo-Jahn-Teller-Type Problems. Chemphyschem 2024; 25:e202400130. [PMID: 38427966 DOI: 10.1002/cphc.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
In this study, we examine the adiabat-to-diabat (ATD) angles for trajectories in 2-dimensional vibrational subspace of the seam space of two degenerate states. In circulating around the tangential touching degeneracy center, the ATD angle is changed by2 π ${2\pi }$ or 0, similar to the Renner-Teller problem and the pseudo-Jahn-Teller problem, respectively. These ATD angle profiles may be indistinguishable from those of circulating multiple conical intersections or a pseudo-Jahn-Teller center. Methods to discern those seemingly indistinguishable cases are proposed. A sharp zigzag variation of the ATD angle is seen as a feature for trajectories that graze a pseudo-Jahn-Teller-type tangential touching center, in contrast to the monotonic steep variation for grazing a conical intersection or a Renner-Teller-type tangential touching center.
Collapse
Affiliation(s)
- Benny Jun Chen
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2 L3G1, Canada
| | - Ekadashi Pradhan
- Department of Chemistry, York University, Toronto, Ontario, M3 J1P3, Canada
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2 L3G1, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario, M3 J1P3, Canada
| |
Collapse
|
3
|
Naskar K, Mukherjee S, Ghosh S, Adhikari S. Coupled 3D ( J ≥ 0) Time-Dependent Wave Packet Calculation for the F + H 2 Reaction on Accurate Ab Initio Multi-State Diabatic Potential Energy Surfaces. J Phys Chem A 2024; 128:1438-1456. [PMID: 38359800 DOI: 10.1021/acs.jpca.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We had calculated adiabatic potential energy surfaces (PESs), nonadiabatic, and spin-orbit (SO) coupling terms among the lowest three electronic states (12A', 22A', and 12A″) of the F + H2 system using the multireference configuration interaction (MRCI) level of theory, and the adiabatic-to-diabatic transformation equations were solved to formulate the diabatic Hamiltonian matrix [J. Chem. Phys. 2020, 153, 174301] for the entire region of the nuclear configuration space. The accuracy of such diabatic PESs is explored by performing scattering calculations to evaluate integral cross sections (ICSs) and rate constants. The nonadiabatic and SO effects are studied by utilizing coupled 3D time-dependent wave packet formalism with zero and nonzero total angular momentum on multiple adiabatic/diabatic surfaces calculation. We depict the convergence profiles of reaction probabilities for the reactive as well as nonreactive processes on various electronic states at different collision energies with respect to total angular momentum including all helicity quantum numbers. Finally, total ICSs are calculated as functions of collision energies for the initial rovibrational state (v = 0, j = 0) of the H2 molecule along with the temperature-dependent rate coefficient, where those quantities are compared with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, West Bengal, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
4
|
Sah MK, Mukherjee S, Saha S, Naskar K, Adhikari S. Photoelectron spectra of benzene: Can path dependent diabatic surfaces provide unique observables? J Chem Phys 2023; 159:244116. [PMID: 38153145 DOI: 10.1063/5.0177186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
While carrying out Beyond Born-Oppenheimer theory based diabatization, the solutions of adiabatic-to-diabatic transformation equations depend on the paths of integration over two-dimensional cross-sections of multi-dimensional space of nuclear degrees of freedom. It is shown that such path-dependent solutions leading to diabatic potential energy surface matrices computed along any two different paths are related through an orthogonal matrix, and thereby, those surface matrices should provide unique observables. While exploring the numerical validity of the theoretical framework, we construct diabatic Hamiltonians for the five low-lying electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of benzene radical cation (C6H6+) along three different approaches of contour integration over two dimensional nuclear planes constituted by seven non-adiabatically active normal modes. Three different diabatic surface matrices are further employed to generate the photoelectron spectra of the benzene molecule (C6H6). It is interesting to note that the spectral peak positions and intensity patterns for all three cases are almost close to each other and also exhibit very good agreement with the experimental results.
Collapse
Affiliation(s)
- Mantu Kumar Sah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Swagato Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Naskar K, Ravi S, Adhikari S, Baer M, Sathyamurthy N. Beyond Born-Oppenheimer Constructed Diabatic Potential Energy Surfaces for HeH 2. J Phys Chem A 2023; 127:3832-3847. [PMID: 37098130 DOI: 10.1021/acs.jpca.3c01047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
First-principles based beyond Born-Oppenheimer theory has been employed to construct multistate global Potential-Energy Surfaces (PESs) for the HeH2+ system by explicitly incorporating the Nonadiabatic Coupling Terms (NACTs). Adiabatic PESs and NACTs for the lowest four electronic states (12A', 22A', 32A' and 42A') are evaluated as functions of hyperangles for a grid of fixed values of the hyperradius in hyperspherical coordinates. Conical intersection between different states are validated by integrating the NACTs along appropriately chosen contours. Subsequently, adiabatic-to-diabatic (ADT) transformation angles are determined by solving the ADT equations to construct the diabatic potential matrix for the HeH2+ system which are smooth, single-valued, continuous, and symmetric and are suitable for performing accurate scattering calculations for the titled system.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- School of Advanced Sciences and Languages VIT Bhopal University, Bhopal, 466114, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
6
|
Mukherjee S, Hazra S, Ghosh S, Mukherjee S, Adhikari S. Trajectory Surface Hopping vs. Quantum Scattering Calculations on D+ + H2 and H + H2+ Reactions using Ab Initio Surfaces and Couplings. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Dutta J, Ravi S, Mukherjee S, Ojha AK, Adhikari S. Jahn-Teller Effect in Orthorhombic Manganites: Ab Initio Hamiltonian and Roto-vibrational Spectrum. J Phys Chem A 2022; 126:691-709. [PMID: 35089047 DOI: 10.1021/acs.jpca.1c08912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time, using three different electronic structure methodologies, namely, CASSCF, RS2c, and MRCI(SD), we construct ab initio adiabatic potential energy surfaces (APESs) and nonadiabatic coupling term (NACT) of two electronic states (5Eg) of MnO69- unit, where eight such units share one La atom in LaMnO3 crystal. While fitting those APESs with analytic functions of normal modes (Qx, Qy), an empirical scaling factor is introduced considering the mass ratio of eight MnO69- units with and without one La atom to explore the environmental (mass) effect on MnO69- unit. When the roto-vibrational levels of MnO69- Hamiltonian are calculated, peak positions computed from ab initio constructed excited APESs are found to be enough close with the experimental satellite transitions [ J. Exp. Theor. Phys. 2016, 122, 890-901] endorsing our earlier model results [ J. Chem. Phys. 2019, 150, 064703]. In order to explore the electron-nuclear coupling in an alternate way, theoretically "exact" and numerically "accurate" beyond Born-Oppenheimer (BBO) theory based diabatic potential energy surfaces (PESs) of MnO69- are constructed to generate the photoelectron (PE) spectra. The PE spectral band also exhibits good peak by peak correspondence with the higher satellite transitions in the dielectric function spectra of the LaMnO3 complex.
Collapse
Affiliation(s)
- Joy Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India.,School of Advance Science and Languages, VIT Bhopal University, Bhopal-466114, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Avik Kumar Ojha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India
| |
Collapse
|
8
|
Mukherjee S, Ravi S, Dutta J, Sardar S, Adhikari S. Beyond Born-Oppenheimer based diabatic surfaces of 1,3,5-C 6H 3F 3+ to generate the photoelectron spectra using time-dependent discrete variable representation approach. Phys Chem Chem Phys 2022; 24:2185-2202. [PMID: 35006221 DOI: 10.1039/d1cp04733g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, Beyond Born-Oppenheimer (BBO) treatment is implemented to construct diabatic potential energy surfaces (PESs) of 1,3,5-C6H3F3+ over a series [eighteen (18)] of two-dimensional (2D) nuclear planes constituted with eleven normal modes (Q2, Q9x, Q9y, Q13x, Q13y, Q18x, Q18y, Q10x, Q10y, Q12x and Q12y) to include all possible nonadiabatic interactions among six coupled electronic states (X̃2E'', , B̃2E' and ). We had formulated explicit expressions of adiabatic to diabatic transformation (ADT) equations [S. Mukherjee, J. Dutta, B. Mukherjee, S. Sardar and S. Adhikari, J. Chem. Phys., 2019, 150, 064308] for the same system forming six state sub-Hilbert space and at present, these ADT equations are solved by incorporating MRCI level ab initio adiabatic PESs and CP-MCSCF calculated nonadiabatic coupling terms (NACTs) to derive diabatic PESs and couplings. Such single-valued, smooth, symmetric and continuous diabatic surface matrices are utilized to carry out multi-state multi-mode nuclear dynamics with the help of time-dependent discrete variable representation (TDDVR) methodology to compute the photoelectron (PE) spectra of 1,3,5-C6H3F3. Our theoretically calculated spectra for X̃2E'', and states using BBO treatment and TDDVR dynamics show peak by peak correspondence with the experimental results as well as better than the findings of the multi-configuration time-dependent Hartree (MCTDH) method.
Collapse
Affiliation(s)
- Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India. .,School of Advance Science and Languages, VIT Bhopal University, Bhopal - 466114, India
| | - Joy Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Subhankar Sardar
- Department of Chemistry, Bhatter College, Dantan, Paschim Medinipur - 721426, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| |
Collapse
|
9
|
Wang Y, Yarkony DR. Conical intersection seams in spin-orbit coupled systems with an even number of electrons: A numerical study based on neural network fit surfaces. J Chem Phys 2021; 155:174115. [PMID: 34742185 DOI: 10.1063/5.0067660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we consider the existence and topography of seams of conical intersections (CIs) for two key singlet-triplet systems, including a uniformly scaled spin-orbit interaction. The basic one triplet and one singlet state system denoted as (S0,T1) and the two singlets and one triplet system denoted as (S0,S1,T1) are treated. Essential to this analysis are realistic electronic structure data taken from a recently reported neural network fit for the 1,21A and 13A states of NH3, including Hsf (spin-free) and Hso (spin-orbit) surfaces derived from high quality ab initio wavefunctions. Three types of seams for the (S0,S1,T1) system are reported, which depend on the choice of the electronic Hamiltonian, He. The nonrelativistic CI seam [He = Hsf, (S0,S1)], the energy minimized nonrelativistic singlet-triplet intersection seam [He = Hsf, (S0,T1)], and the fully relativistic seam in the spin-diabatic representation (He = Htot = Hsf + Hso) are reported as functions of R(N-H). The derivative couplings are computed using He = Htot and Hsf from the fit data. The line integral of the derivative coupling is employed to juxtapose the geometric phase in the relativistic, He = Htot, and nonrelativistic, He = Hsf, cases. It is found for the (S0,T1) system that there is no CI in the spin-adiabatic representation, while for the (S0,S1,T1) system, CI can only be formed for two pairs of spin-adiabatic electronic states. The geometric phase effect thus needs to be handled with care when it comes to spin-nonconserving dynamics simulations.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
10
|
Ghosh S, Sharma R, Adhikari S, Varandas AJC. Dynamical calculations of O( 3P) + OH( 2Π) reaction on the CHIPR potential energy surface using the fully coupled time-dependent wave-packet approach in hyperspherical coordinates. Phys Chem Chem Phys 2021; 23:21784-21796. [PMID: 34550126 DOI: 10.1039/d1cp02488d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have carried out quantum dynamics calculations for the O + OH → H + O2 reaction on the CHIPR [A. J. C. Varandas, J. Chem. Phys., 2013, 138, 134117] potential energy surface (PES) for ground state HO2 using the fully coupled 3D time-dependent wavepacket formalism [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun., 2013, 184, 270] in hyperspherical coordinates. Reaction probabilities for J > 0 are calculated for different initial rotational states of the OH radical (v = 0; j = 0, 1). State-to-state as well as total integral cross sections and rate-coefficients are evaluated and compared with previous theoretical calculations and available experimental studies. Using the rate constant for the forward (hereinafter considered to be H + O2 → O + OH) and backward (O + OH → H + O2) reactions of this reactive system, the equilibrium constant of the reversible process [H + O2 ⇌ O + OH] is calculated as a function of temperature and compared with previous experimental measurements.
Collapse
Affiliation(s)
- Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Rahul Sharma
- Department of Chemistry, St. Xaviers' College, Kolkata-700016, West Bengal, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - António J C Varandas
- School of Physics and Physical Engineering, Qufu Normal University, 273165 Qufu, China.,Department of Physics, Universidade Federal do Espírito Santo, 29075-910 Victória, Brazil.,Departamento de Qumica, and Centro de Qumica, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
11
|
Affiliation(s)
| | - A. J. C. Varandas
- Department of Chemistry, University of Coimbra, Coimbra, Portugal
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, People's Republic of China
- Department of Physics, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
12
|
Mukherjee S, Ravi S, Naskar K, Sardar S, Adhikari S. A beyond Born–Oppenheimer treatment of C6H6+ radical cation for diabatic surfaces: Photoelectron spectra of its neutral analog using time-dependent discrete variable representation. J Chem Phys 2021; 154:094306. [DOI: 10.1063/5.0040361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subhankar Sardar
- Department of Chemistry, Bhatter College, Dantan, Paschim Medinipur 721426, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|