1
|
Eltareb A, Khan BA, Lopez GE, Giovambattista N. Nuclear quantum effects on glassy water under pressure: Vitrification and pressure-induced transformations. J Chem Phys 2024; 161:234502. [PMID: 39679523 DOI: 10.1063/5.0238823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA-HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Bibi A Khan
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Gustavo E Lopez
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
2
|
Eltareb A, Zhou Y, Lopez GE, Giovambattista N. Potential energy landscape formalism for quantum molecular liquids. Commun Chem 2024; 7:289. [PMID: 39632951 PMCID: PMC11618503 DOI: 10.1038/s42004-024-01342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The potential energy landscape (PEL) formalism is a powerful tool within statistical mechanics to study the thermodynamic properties of classical low-temperature liquids and glasses. Recently, the PEL formalism has been extended to liquids/glasses that obey quantum mechanics, but applications have been limited to atomistic model liquids. In this work, we extend the PEL formalism to liquid/glassy water using path-integral molecular dynamics (PIMD) simulations, where nuclear quantum effects (NQE) are included. Our PIMD simulations, based on the q-TIP4P/F water model, show that the PEL of quantum water is both Gaussian and anharmonic. Importantly, the ring-polymers associated to the O/H atoms in the PIMD simulations, collapse at the local minima of the PEL (inherent structures, IS) for both liquid and glassy states. This allows us to calculate, analytically, the IS vibrational density of states (IS-VDOS) of the ring-polymer system using the IS-VDOS of classical water (obtained from classical MD simulations). The role of NQE on the structural properties of liquid/glassy water at various pressures are discussed in detail. Overall, our results demonstrate that the PEL formalism can effectively describe the behavior of molecular liquids at low temperatures and in the glass states, regardless of whether the liquid/glass obeys classical or quantum mechanics.
Collapse
Grants
- SC3 GM139673 NIGMS NIH HHS
- 1SC3GM139673 U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health)
- HRD-1547380, HRD-2112550, 2329339, CHE-2223461, 2138259, 2138286, 2138307, 2137603,2138296 National Science Foundation (NSF)
- U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health)
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Yang Zhou
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY, 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Izzo MG, Russo J, Pastore G. The interplay between liquid-liquid and ferroelectric phase transitions in supercooled water. Proc Natl Acad Sci U S A 2024; 121:e2412456121. [PMID: 39546564 PMCID: PMC11588139 DOI: 10.1073/pnas.2412456121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
The distinctive characteristics of water, evident in its thermodynamic anomalies, have implications across disciplines from biology to geophysics. Considered a valid hypothesis to rationalize its unique properties, a liquid-liquid phase transition in water below the freezing point, in the so-called supercooled regime, has nowadays been observed in several molecular dynamics simulations and is being actively researched experimentally. The hypothesis of ferroelectric phase transition in supercooled water can be traced back to 1977, due to Stillinger. In this work, we highlight intriguing and far-reaching implications of water: The ferroelectric and liquid-liquid phase transitions can be designed as two facets of the same underlying phenomenon. Our results are based on the analysis of extensive molecular dynamics simulations and are explained in the context of a classical density functional theory in mean-field approximation valid for a polar liquid, where dipolar interaction is treated perturbatively. The theory underpins the potential role of ferroelectricity in promoting the liquid-liquid phase transition, being the density-polarization coupling inherent in the dipolar interaction potential. The existence of ferroelectric order in supercooled low-density liquid water is confirmed by the observation in molecular dynamics simulations of collective modes in space-time polarization correlation functions, traceable to spontaneous breaking of continuous rotational symmetry. Our work sheds light on water's supercooled behavior and opens the door to experimental investigations of the static and dynamic behavior of water's polarization.
Collapse
Affiliation(s)
- Maria Grazia Izzo
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca’ Foscari Venezia, Venezia Mestre30172, Italy
- Scuola Internazionale Superiore di Studi Avanzati SISSA, Physics Division, Trieste34136, Italy
| | - John Russo
- Dipartimento di Fisica, Sapienza Universitá di Roma, Roma00185, Italy
| | - Giorgio Pastore
- Dipartimento di Fisica, Universitá degli Studi di Trieste, Trieste34127, Italy
| |
Collapse
|
4
|
Kimmel GA. Isotope effects in supercooled H2O and D2O and a corresponding-states-like rescaling of the temperature and pressure. J Chem Phys 2024; 160:194508. [PMID: 38767262 DOI: 10.1063/5.0207719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Water shows anomalous properties that are enhanced upon supercooling. The unusual behavior is observed in both H2O and D2O, however, with different temperature dependences for the two isotopes. It is often noted that comparing the properties of the isotopes at two different temperatures (i.e., a temperature shift) approximately accounts for many of the observations-with a temperature shift of 7.2 K in the temperature of maximum density being the most well-known example. However, the physical justification for such a shift is unclear. Motivated by recent work demonstrating a "corresponding-states-like" rescaling for water properties in three classical water models that all exhibit a liquid-liquid transition and critical point [Uralcan et al., J. Chem. Phys. 150, 064503 (2019)], the applicability of this approach for reconciling the differences in the temperature- and pressure-dependent thermodynamic properties of H2O and D2O is investigated here. Utilizing previously published data and equations-of-state for H2O and D2O, we show that the available data and models for these isotopes are consistent with such a low temperature correspondence. These observations provide support for the hypothesis that a liquid-liquid critical point, which is predicted to occur at low temperatures and high pressures, is the origin of many of water's anomalies.
Collapse
Affiliation(s)
- Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
5
|
Eltareb A, Lopez GE, Giovambattista N. Potential energy landscape of a flexible water model: Equation of state, configurational entropy, and Adam-Gibbs relationship. J Chem Phys 2024; 160:154510. [PMID: 38639318 PMCID: PMC11184974 DOI: 10.1063/5.0200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
The potential energy landscape (PEL) formalism is a tool within statistical mechanics that has been used in the past to calculate the equation of states (EOS) of classical rigid model liquids at low temperatures, where computer simulations may be challenging. In this work, we use classical molecular dynamics (MD) simulations and the PEL formalism to calculate the EOS of the flexible q-TIP4P/F water model. This model exhibits a liquid-liquid critical point (LLCP) in the supercooled regime, at (Pc = 150 MPa, Tc = 190 K, and ρc = 1.04 g/cm3) [using the reaction field technique]. The PEL-EOS of q-TIP4P/F water and the corresponding location of the LLCP are in very good agreement with the MD simulations. We show that the PEL of q-TIP4P/F water is Gaussian, which allows us to calculate the configurational entropy of the system, Sconf. The Sconf of q-TIP4P/F water is surprisingly similar to that reported previously for rigid water models, suggesting that intramolecular flexibility does not necessarily add roughness to the PEL. We also show that the Adam-Gibbs relation, which relates the diffusion coefficient D with Sconf, holds for the flexible q-TIP4P/F water model. Overall, our results indicate that the PEL formalism can be used to study molecular systems that include molecular flexibility, the common case in standard force fields. This is not trivial since the introduction of large bending/stretching mode frequencies is problematic in classical statistical mechanics. For example, as shown previously, we find that such high frequencies lead to unphysical (negative) entropy for q-TIP4P/F water when using classical statistical mechanics (yet, the PEL formalism can be applied successfully).
Collapse
Affiliation(s)
- Ali Eltareb
- Authors to whom correspondence should be addressed: ; ; and
| | | | | |
Collapse
|
6
|
Lambros E, Fetherolf JH, Hammes-Schiffer S, Li X. A Many-Body Perspective of Nuclear Quantum Effects in Aqueous Clusters. J Phys Chem Lett 2024; 15:4070-4075. [PMID: 38587257 DOI: 10.1021/acs.jpclett.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nuclear quantum effects play an important role in the structure and thermodynamics of aqueous systems. By performing a many-body expansion with nuclear-electronic orbital (NEO) theory, we show that proton quantization can give rise to significant energetic contributions for many-body interactions spanning several molecules in single-point energy calculations of water clusters. Although zero-point motion produces a large increase in energy at the one-body level, nuclear quantum effects serve to stabilize higher-order molecular interactions. These results are significant because they demonstrate that nuclear quantum effects play a nontrivial role in many-body interactions of aqueous systems. Our approach also provides a pathway for incorporating nuclear quantum effects into water potential energy surfaces. The NEO approach is advantageous for many-body expansion analyses because it includes nuclear quantum effects directly in the energies.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan H Fetherolf
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Gerrits N, Jackson B, Bogaerts A. Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces. J Phys Chem Lett 2024; 15:2566-2572. [PMID: 38416779 PMCID: PMC10926167 DOI: 10.1021/acs.jpclett.3c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule-metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.
Collapse
Affiliation(s)
- Nick Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office
Box 9502, 2300 RA Leiden, Netherlands
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Antwerp, Belgium
| | - Bret Jackson
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Antwerp, Belgium
| |
Collapse
|
8
|
Eltareb A, Lopez GE, Giovambattista N. A continuum of amorphous ices between low-density and high-density amorphous ice. Commun Chem 2024; 7:36. [PMID: 38378859 PMCID: PMC10879119 DOI: 10.1038/s42004-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Amorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densities ρLDA ≈ 0.94 g/cm3 and ρHDA ≈ 1.15-1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced a medium-density amorphous ice (MDA, ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated at P ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared at P = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY, 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Madanchi A, Kilgour M, Zysk F, Kühne TD, Simine L. Simulations of disordered matter in 3D with the morphological autoregressive protocol (MAP) and convolutional neural networks. J Chem Phys 2024; 160:024101. [PMID: 38189615 DOI: 10.1063/5.0174615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Disordered molecular systems, such as amorphous catalysts, organic thin films, electrolyte solutions, and water, are at the cutting edge of computational exploration at present. Traditional simulations of such systems at length scales relevant to experiments in practice require a compromise between model accuracy and quality of sampling. To address this problem, we have developed an approach based on generative machine learning called the Morphological Autoregressive Protocol (MAP), which provides computational access to mesoscale disordered molecular configurations at linear cost at generation for materials in which structural correlations decay sufficiently rapidly. The algorithm is implemented using an augmented PixelCNN deep learning architecture that, as we previously demonstrated, produces excellent results in 2 dimensions (2D) for mono-elemental molecular systems. Here, we extend our implementation to multi-elemental 3D and demonstrate performance using water as our test system in two scenarios: (1) liquid water and (2) samples conditioned on the presence of pre-selected motifs. We trained the model on small-scale samples of liquid water produced using path-integral molecular dynamics simulations, including nuclear quantum effects under ambient conditions. MAP-generated water configurations are shown to accurately reproduce the properties of the training set and to produce stable trajectories when used as initial conditions in quantum dynamics simulations. We expect our approach to perform equally well on other disordered molecular systems in which structural correlations decay sufficiently fast while offering unique advantages in situations when the disorder is quenched rather than equilibrated.
Collapse
Affiliation(s)
- Ata Madanchi
- Department of Physics, McGill University, 3600 University St., Montreal, Quebec H3A 2T8, Canada
| | - Michael Kilgour
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, Quebec H3A 0B8, Canada
| | - Frederik Zysk
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn 33098, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn 33098, Germany
| | - Lena Simine
- Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
10
|
Eltareb A, Lopez GE, Giovambattista N. The Importance of Nuclear Quantum Effects on the Thermodynamic and Structural Properties of Low-Density Amorphous Ice: A Comparison with Hexagonal Ice. J Phys Chem B 2023; 127:4633-4645. [PMID: 37178124 DOI: 10.1021/acs.jpcb.3c01025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We study the nuclear quantum effects (NQE) on the thermodynamic properties of low-density amorphous ice (LDA) and hexagonal ice (Ih) at P = 0.1 MPa and T ≥ 25 K. Our results are based on path-integral molecular dynamics (PIMD) and classical MD simulations of H2O and D2O using the q-TIP4P/F water model. We show that the inclusion of NQE is necessary to reproduce the experimental properties of LDA and ice Ih. While MD simulations (no NQE) predict that the density ρ(T) of LDA and ice Ih increases monotonically upon cooling, PIMD simulations indicate the presence of a density maximum in LDA and ice Ih. MD and PIMD simulations also predict a qualitatively different T-dependence for the thermal expansion coefficient αP(T) and bulk modulus B(T) of both LDA and ice Ih. Remarkably, the ρ(T), αP(T), and B(T) of LDA are practically identical to those of ice Ih. The origin of the observed NQE is due to the delocalization of the H atoms, which is identical in LDA and ice Ih. H atoms delocalize considerably (over a distance ≈ 20-25% of the OH covalent-bond length) and anisotropically (preferentially perpendicular to the OH covalent bond), leading to less linear hydrogen bonds HB (larger HOO angles and longer OO separations) than observed in classical MD simulations.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
11
|
Panagiotopoulos AZ, Yue S. Dynamics of Aqueous Electrolyte Solutions: Challenges for Simulations. J Phys Chem B 2023; 127:430-437. [PMID: 36607836 DOI: 10.1021/acs.jpcb.2c07477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This Perspective article focuses on recent simulation work on the dynamics of aqueous electrolytes. It is well-established that full-charge, nonpolarizable models for water and ions generally predict solution dynamics that are too slow in comparison to experiments. Models with reduced (scaled) charges do better for solution diffusivities and viscosities but encounter issues describing other dynamic phenomena such as nucleation rates of crystals from solution. Polarizable models show promise, especially when appropriately parametrized, but may still miss important physical effects such as charge transfer. First-principles calculations are starting to emerge for these properties that are in principle able to capture polarization, charge transfer, and chemical transformations in solution. While direct ab initio simulations are still too slow for simulations of large systems over long time scales, machine-learning models trained on appropriate first-principles data show significant promise for accurate and transferable modeling of electrolyte solution dynamics.
Collapse
Affiliation(s)
| | - Shuwen Yue
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Garkul A, Stegailov V. Molecular dynamics analysis of elastic properties and new phase formation during amorphous ices transformations. Sci Rep 2022; 12:13325. [PMID: 35922440 PMCID: PMC9349219 DOI: 10.1038/s41598-022-17666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Unlike conventional first-order phase transitions, the kinetics of amorphous-amorphous transitions has been much less studied. The ultrasonic experiments on the transformations between low-density and high-density amorphous ice induced by pressure or heating provided the pressure and temperature dependencies of elastic moduli. In this article, we make an attempt to build a microscopic picture of these experimentally studied transformations using the molecular dynamics method with the TIP4P/Ice water model. We study carefully the dependence of the results of elastic constants calculations on the deformation rates. The system size effects are considered as well. The comparison with the experimental data enriches our understanding of the transitions observed. Our modeling gives new information about the formation mechanisms of new phase clusters during the transition between low-density and high-density amorphous ices. We analyse the applicability of the term "nucleation" for these processes.
Collapse
Affiliation(s)
- Anastasiia Garkul
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412, Moscow, Russia.
- Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudny, Russia.
| | - Vladimir Stegailov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudny, Russia
- National Research University Higher School of Economics, 109028, Moscow, Russia
| |
Collapse
|
13
|
Yu Q, Qu C, Houston PL, Conte R, Nandi A, Bowman JM. q-AQUA: A Many-Body CCSD(T) Water Potential, Including Four-Body Interactions, Demonstrates the Quantum Nature of Water from Clusters to the Liquid Phase. J Phys Chem Lett 2022; 13:5068-5074. [PMID: 35652912 DOI: 10.1021/acs.jpclett.2c00966] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many model potential energy surfaces (PESs) have been reported for water; however, none are strictly from "first-principles". Here we report such a potential, based on a many-body representation at the CCSD(T) level of theory up to the four-body interaction. The new PES is benchmarked for the isomers of the water hexamer for dissociation energies, harmonic frequencies, and unrestricted diffusion Monte Carlo (DMC) calculations of the zero-point energies of the Prism, Book, and Cage isomers. Dissociation energies of several isomers of the 20-mer agree well with recent benchmark energies. Exploratory DMC calculations on this cluster verify the robustness of the new PES for quantum simulations. The accuracy and speed of the new PES are demonstrated for standard condensed phase properties, i.e., the radial distribution function and the self-diffusion constant. Quantum effects are shown to be substantial for these observables and also needed to bring theory into excellent agreement with experiment.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Chen Qu
- Independent Researcher, Toronto, Ontario, Canada
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Eltareb A, Lopez GE, Giovambattista N. Nuclear quantum effects on the dynamics and glass behavior of a monatomic liquid with two liquid states. J Chem Phys 2022; 156:204502. [PMID: 35649856 PMCID: PMC9132595 DOI: 10.1063/5.0087680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid-liquid phase transition and liquid-liquid critical point. PIMD simulations are performed using different values of Planck's constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid (h = 0) to increasingly quantum liquids (h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., Tg LDL(P) decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., Tg HDL(P) increases upon compression. (iii) NQE shift both Tg LDL(P) and Tg HDL(P) toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA-HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA-HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA-HDA transformation.
Collapse
|
15
|
Gartner TE, Hunter KM, Lambros E, Caruso A, Riera M, Medders GR, Panagiotopoulos AZ, Debenedetti PG, Paesani F. Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model. J Phys Chem Lett 2022; 13:3652-3658. [PMID: 35436129 DOI: 10.1021/acs.jpclett.2c00567] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For the past 50 years, researchers have sought molecular models that can accurately reproduce water's microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima near 223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ∼208 K. A local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is found to be the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water's physical properties across broad ranges of thermodynamic states, including the so-called water's "no man's land" which is difficult to probe experimentally.
Collapse
Affiliation(s)
- Thomas E Gartner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kelly M Hunter
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Gregory R Medders
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Eltareb A, Lopez GE, Giovambattista N. Evidence of a liquid-liquid phase transition in H[Formula: see text]O and D[Formula: see text]O from path-integral molecular dynamics simulations. Sci Rep 2022; 12:6004. [PMID: 35397618 PMCID: PMC8994788 DOI: 10.1038/s41598-022-09525-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/23/2022] [Indexed: 01/22/2023] Open
Abstract
We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H[Formula: see text]O and D[Formula: see text]O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density [Formula: see text], isothermal compressibility [Formula: see text], and self-diffusion coefficients D(T) of H[Formula: see text]O and D[Formula: see text]O are in excellent agreement with available experimental data; the isobaric heat capacity [Formula: see text] obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H[Formula: see text]O and D[Formula: see text]O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H[Formula: see text]O and D[Formula: see text]O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H[Formula: see text]O, from PIMD simulations, is located at [Formula: see text] MPa, [Formula: see text] K, and [Formula: see text] g/cm[Formula: see text]. Isotope substitution effects are important; the LLCP location in q-TIP4P/F D[Formula: see text]O is estimated to be [Formula: see text] MPa, [Formula: see text] K, and [Formula: see text] g/cm[Formula: see text]. Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water, [Formula: see text] MPa, [Formula: see text] K, and [Formula: see text] g/cm[Formula: see text]). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of [Formula: see text] for D[Formula: see text]O and, particularly, H[Formula: see text]O suggest that improved water models are needed for the study of supercooled water.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016 USA
| | - Gustavo E. Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY 10468 USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016 USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016 USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016 USA
| |
Collapse
|
17
|
Kringle L, Thornley WA, Kay BD, Kimmel GA. Isotope effects on the structural transformation and relaxation of deeply supercooled water. J Chem Phys 2022; 156:084501. [DOI: 10.1063/5.0078796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have examined the structure of supercooled liquid D2O as a function of temperature between 185 and 255 K using pulsed laser heating to rapidly heat and cool the sample on a nanosecond timescale. The liquid structure can be represented as a linear combination of two structural motifs, with a transition between them described by a logistic function centered at 218 K with a width of 10 K. The relaxation to a metastable state, which occurred prior to crystallization, exhibited nonexponential kinetics with a rate that was dependent on the initial structural configuration. When the temperature is scaled by the temperature of maximum density, which is an isostructural point of the isotopologues, the structural transition and the non-equilibrium relaxation kinetics of D2O agree remarkably well with those for H2O.
Collapse
Affiliation(s)
- Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Wyatt A. Thornley
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Bruce D. Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Greg A. Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
18
|
Reich V, Majumdar A, Müller M, Busch S. Comparison of molecular dynamics simulations of water with neutron and X-ray scattering experiments. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atomistic structure and dynamics obtained from molecular dynamics (MD) simulations with the example of TIP3P (rigid and flexible) and TIP4P/2005 (rigid) water is compared to neutron and X-ray scattering data at ambient conditions. Neutron and X-ray diffractograms are calculated from the simulations for four isotopic substitutions as well as the incoherent intermediate scattering function for neutrons. The resulting curves are compared to each other and to published experimental data. Differences between simulated and measured intermediate scattering functions are quantified by fitting an analytic model to the computed values. The sensitivity of the scattering curves to the parameters of the MD simulations is demonstrated on the example of two parameters, bond length and angle.
Collapse
|