1
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
2
|
Yamin M, Ghouri ZK, Rohman N, Syed JA, Skelton A, Ahmed K. Unravelling pH/pKa influence on pH-responsive drug carriers: Insights from ibuprofen-silica interactions and comparative analysis with carbon nanotubes, sulfasalazine, and alendronate. J Mol Graph Model 2024; 128:108720. [PMID: 38324969 DOI: 10.1016/j.jmgm.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
This study employs density functional theory to explore the interaction between ibuprofen (IBU) and silica, emphasizing the influence of the trimethylsilyl (TMS) functional group for designing pH-responsive drug carriers. The surface (S) and drug (D) molecules' neutral (0) or deprotonated (-1) states were taken into consideration during the investigation. The likelihood of these states was determined based on the pKa values and the desired pH conditions. To calculate the pH-dependent interaction energy (EintpH), four different situations have been identified: S0D0, S0D-1, S-1D0, and S-1D-1.The electrostatic component of interaction energy aligns favorably with its theoretical value in both the Debye-Hückel and Grahame models. The investigation has gathered first-hand experimental data on the drug loading and release of pH-responsive mesoporous silica nanoparticles. Effective drug loading was observed in the acidic environment of the stomach (pH 2-5), followed by a release in the slightly basic to neutral pH of the small intestine (pH 7.4), These findings align with existing literature. The results revealed horizontal drug adherence on silica surfaces, improving binding capabilities. Comparisons were made with combinations involving carboxylated carbon nanotubes and ibuprofen, silica, and sulfasalazine, and silica and alendronate, exploring drug loading/release dynamics associated with positive/negative interaction energies. The investigation, supported by experimental data, contributes valuable insights into pH-responsive mesoporous silica nanoparticles, offering new design possibilities for drug carriers.
Collapse
Affiliation(s)
- Marriam Yamin
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Zafar Khan Ghouri
- L. E. J. Nanotechnology Centre, H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Net Zero Industry Innovation Centre, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Nashiour Rohman
- Department of Chemistry, College of Science, Sultan Qaboos University, P. O. Box 36, Al-khoudh, Muscat P. C. 123, Oman
| | - Junaid Ali Syed
- L. E. J. Nanotechnology Centre, H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Adam Skelton
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Khalid Ahmed
- L. E. J. Nanotechnology Centre, H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Rohman N, Ahmed K, Skelton AA, Mohiuddin T, Khan I, Selvaraj R, Yamin M. Theoretical insights and implications of pH-dependent drug delivery systems using silica and carbon nanotube. J Mol Graph Model 2023; 125:108609. [PMID: 37647724 DOI: 10.1016/j.jmgm.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
In this paper we have studied the density functional theory of four drugs ibuprofen, alendronate, Sulfasalazine and paracetamol with quartz, propylamine, trimethylamine functionalized quartz and carboxyl modified carbon nanotube. The attractive and repulsive interaction energies between drugs and quartz is obtained at various pH values. The attractive and repulsive energies are well correlated with experimental drug loading and releasing behavior by mesoporous silica nanoparticles. Further, a theoretical model is developed that accounts the electrostatic interaction between silica and drug and the model can predict the drug loading and releasing behavior by silica nanoparticles at various pH values. Sulfasalazine can be taken orally and loaded with trimethyl ammonium functionalized mesoporous silica nanoparticles, which keeps the drug in tact with the carrier in the acidic environment of the stomach and releases it into the neutral or basic medium of the small intestine. Alendronate may be loaded and released from propylamine functionalized mesoporous silica nanoparticles in the ranges of 1-5 and > 8, respectively. Ibuprofen is absorbed in an acidic environment and released in basic conditions for carboxyl modified carbon nanotube. The loading and releasing pH ranges for paracetamol in trimethylammonium functionalized mesoporous silica nanoparticles are 4-8 and >8, respectively. We also convert the pH-dependent variant of the diffusion-controlled Higuchi equation. We have changed the original Higuchi equation to produce the pH-dependent variation by incorporating the Nernst-Planck equation into Flick's first law. The updated equation could be used to forecast when medication particles with varying release times will emerge from a nanoparticles matrix.
Collapse
Affiliation(s)
- Nashiour Rohman
- Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-khoudh, Muscat, P. C. 123, Oman.
| | - Khalid Ahmed
- L. E. J. Nanotechnology Centre, H. E. J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Adam A Skelton
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Tariq Mohiuddin
- Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-khoudh, Muscat, P. C. 123, Oman
| | - Imran Khan
- Department of Chemistry, College of Science, Sultan Qaboos University, P. O. Box 36, Al-khoudh, Muscat, P. C. 123, Oman
| | - Rengaraj Selvaraj
- Department of Chemistry, College of Science, Sultan Qaboos University, P. O. Box 36, Al-khoudh, Muscat, P. C. 123, Oman
| | - Marriam Yamin
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| |
Collapse
|
4
|
Theoretical modelling of electrostatic interactions in pH-dependent drug loading and releasing by functionalized mesoporous silica nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Zhang H, Sun W, Zhu Y, He J, Chen D, Zhang C. Effects of the Goethite Surface Hydration Microstructure on the Adsorption of the Collectors Dodecylamine and Sodium Oleate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10052-10060. [PMID: 34392685 DOI: 10.1021/acs.langmuir.1c01265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dodecylamine (DDA) and sodium oleate (OL) are commonly used collectors in the reverse flotation and the direct flotation of goethite. However, the flotation mechanisms of DDA and OL on the goethite surface remain unclear. In this study, the first-principles density functional theory calculations were used to reveal the role of the hydration of the goethite surface and its effects on flotation reagents from a microscopic perspective. The calculation results showed that DDA was adsorbed on the surface of goethite by hydrogen bonds in the absence of hydration. However, the existence of the hydration microstructure hindered the formation of hydrogen bonds and made it difficult for DDA to be adsorbed on the goethite surface. In the OL system, oleate ions are chemically adsorbed on the surface Fe sites of goethite in the absence of hydration, while in the presence of hydration, the oleate ions were adsorbed on the H-terminal hydration surface of goethite by hydrogen bonds. This work sheds new light on the roles of the hydration microstructure and the adsorption mechanism of the flotation reagent on the oxide minerals.
Collapse
Affiliation(s)
- Hongliang Zhang
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Sun
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yangge Zhu
- State Key Laboratory of Mineral Processing Science and Technology, BGRIMM Technology Group, Beijing 102600, China
| | - Jianyong He
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Daixiong Chen
- Key Laboratory of Hunan Province for Comprehensive Utilization of Complex Copper-Lead Zinc Associated Metal Resources, Hunan Research Institute for Nonferrous Metals, Changsha 410100, China
| | - Chenyang Zhang
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
- Key Laboratory of Hunan Province for Comprehensive Utilization of Complex Copper-Lead Zinc Associated Metal Resources, Hunan Research Institute for Nonferrous Metals, Changsha 410100, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
| |
Collapse
|