1
|
Gao Y, Wu J, Feng Y, Han J, Fang H. Effects of Hydrogen Bond Networks on Viscosity in Aqueous Solutions. J Phys Chem B 2024; 128:8984-8996. [PMID: 39236306 DOI: 10.1021/acs.jpcb.4c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
In aqueous solutions, the impact of ions on hydrogen bond networks plays a crucial role in transport properties. We used molecular dynamics simulations to explain how ions affect viscosity through structural changes. We developed a quantitative model to describe the effect of ions on viscosity. The model comprises two parts: the addition of ions alters hydrogen bond networks, and changes in hydrogen bond networks exponentially lead to changes in viscosity. The influence of ions on hydrogen bond networks involves the following mechanisms: first, ions can disrupt the tetrahedral structures within the first solvation shell into three-coordinated structures through substitution; second, structural changes within the first shells affect the global hydrogen bond network through electrostatic forces and the hindrance of ionic volumes. By analyzing the mechanisms of how hydrogen bond networks determine viscosity through the decomposition of viscosity, we found that the proportion of potential viscosity in aqueous solutions primarily increases due to the enhancement of non-hydrogen bonding interactions, and the proportion of hydrogen bonding viscosity decreases accordingly. Our results demonstrate that hydrogen bond networks are crucial for describing the changes in transport phenomena affected by external factors.
Collapse
Affiliation(s)
- Yitian Gao
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
- China Renewable Energy Engineering Institute, Beijing 100120, China
| | - Jian Wu
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yixuan Feng
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Jiale Han
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Hongwei Fang
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Konermann L, Liu Z, Haidar Y, Willans MJ, Bainbridge NA. On the Chemistry of Aqueous Ammonium Acetate Droplets during Native Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:13957-13966. [PMID: 37669319 DOI: 10.1021/acs.analchem.3c02546] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Ammonium acetate (NH4Ac) is a widely used solvent additive in native electrospray ionization (ESI) mass spectrometry. NH4Ac can undergo proton transfer to form ammonia and acetic acid (NH4+ + Ac- → NH3 + HAc). The volatility of these products ensures that electrosprayed ions are free of undesired adducts. NH4Ac dissolution in water yields pH 7, providing "physiological" conditions. However, NH4Ac is not a buffer at pH 7 because NH4+ and Ac- are not a conjugate acid/base pair (Konermann, L. J. Am. Soc. Mass Spectrom. 2017, 28, 1827-1835.). In native ESI, it is desirable that analytes experience physiological conditions not only in bulk solution but also while they reside in ESI droplets. Little is known about the internal milieu of NH4Ac-containing ESI droplets. The current work explored the acid/base chemistry of such droplets, starting from a pH 7 analyte solution. We used a two-pronged approach involving evaporation experiments on bulk solutions under ESI-mimicking conditions, as well as molecular dynamics simulations using a newly developed algorithm that allows for proton transfer. Our results reveal that during droplet formation at the tip of the Taylor cone, electrolytically generated protons get neutralized by Ac-, making NH4+ the net charge carriers in the weakly acidic nascent droplets. During the subsequent evaporation, the droplets lose water as well as NH3 and HAc that were generated by proton transfer. NH3 departs more quickly because of its greater volatility, causing the accumulation of HAc. Together with residual Ac-, these HAc molecules form an acetate buffer that stabilizes the average droplet pH at 5.4 ± 0.1, as governed by the Henderson-Hasselbalch equation. The remarkable success of native ESI investigations in the literature implies that this pH drop by ∼1.6 units relative to the initially neutral analyte solution can be tolerated by most biomolecular analytes on the short time scale of the ESI process.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zeyuan Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicholas A Bainbridge
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Chialvo AA, Crisalle OD. On the Transition-State theory approach to the Jones-Dole’s viscosity B-coefficient: A novel molecular-based interpretation, assessment of its implications, and experimental evidence. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
Steimers E, Matviychuk Y, Holland DJ, Hasse H, von Harbou E. Accurate measurements of self-diffusion coefficients with benchtop NMR using a QM model-based approach. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:1113-1130. [PMID: 35906502 DOI: 10.1002/mrc.5300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The measurement of self-diffusion coefficients using pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy is a well-established method. Recently, benchtop NMR spectrometers with gradient coils have also been used, which greatly simplify these measurements. However, a disadvantage of benchtop NMR spectrometers is the lower resolution of the acquired NMR signals compared to high-field NMR spectrometers, which requires sophisticated analysis methods. In this work, we use a recently developed quantum mechanical (QM) model-based approach for the estimation of self-diffusion coefficients from complex benchtop NMR data. With the knowledge of the species present in the mixture, signatures for each species are created and adjusted to the measured NMR signal. With this model-based approach, the self-diffusion coefficients of all species in the mixtures were estimated with a discrepancy of less than 2 % compared to self-diffusion coefficients estimated from high-field NMR data sets of the same mixtures. These results suggest benchtop NMR is a reliable tool for quantitative analysis of self-diffusion coefficients, even in complex mixtures.
Collapse
Affiliation(s)
- Ellen Steimers
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, Kaiserslautern, 67663, Germany
| | - Yevgen Matviychuk
- Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Daniel J Holland
- Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, Kaiserslautern, 67663, Germany
| | - Erik von Harbou
- Laboratory of Reaction and Fluid Process Engineering, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, Kaiserslautern, 67663, Germany
| |
Collapse
|
5
|
Drecun O, Striolo A, Bernardini C, Sarwar M. Hydration Structures on γ-Alumina Surfaces With and Without Electrolytes Probed by Atomistic Molecular Dynamics Simulations. J Phys Chem B 2022; 126:9105-9122. [PMID: 36321420 PMCID: PMC9661474 DOI: 10.1021/acs.jpcb.2c06491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide range of systems, both engineered and natural, feature aqueous electrolyte solutions at interfaces. In this study, the structure and dynamics of water at the two prevalent crystallographic terminations of gamma-alumina, [110] and [100], and the influence of salts─sodium chloride, ammonium acetate, barium acetate, and barium nitrate on such properties─were investigated using equilibrium molecular dynamics simulations. The resulting interfacial phenomena were quantified from simulation trajectories via atomic density profiles, angle probability distributions, residence times, 2-D density distributions within the hydration layers, and hydrogen bond density profiles. Analysis and interpretation of the results are supported by simulation snapshots. Taken together, our results show stronger interaction and closer association of water with the [110] surface, compared to [100], while ion-induced disruption of interfacial water structure was more prevalent at the [100] surface. For the latter, a stronger association of cations is observed, namely sodium and ammonium, and ion adsorption appears determined by their size. The differences in surface-water interactions between the two terminations are linked to their respective surface features and distributions of surface groups, with atomistic-scale roughness of the [110] surface promoting closer association of interfacial water. The results highlight the fundamental role of surface characteristics in determining surface-water interactions, and the resulting effects on ion-surface and ion-water interactions. Since the two terminations of gamma-alumina considered represent interfaces of significance to numerous industrial applications, the results provide insights relevant for catalyst preparation and adsorption-based water treatment, among other applications.
Collapse
Affiliation(s)
- Olivera Drecun
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, United Kingdom
| | - Alberto Striolo
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, United Kingdom,School
of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States,
| | - Cecilia Bernardini
- Johnson
Matthey Technology Centre, Sonning Common, Reading RG4 9NH, United Kingdom
| | - Misbah Sarwar
- Johnson
Matthey Technology Centre, Sonning Common, Reading RG4 9NH, United Kingdom
| |
Collapse
|
6
|
Santana TF, Oliveira RHDM, dos Santos LE, Lima EPN, Faria SDS, Fonseca MAM, da Silva JR, Tatmatsu-Rocha JC, Gomes MMF, Fleury Rosa MF, Fleury Rosa SDSR, Carneiro MLB. Effect of exposure to a light-emitting diode (LED) on the physicochemical characteristics of natural latex biomembranes used to treat diabetic ulcers. RESEARCH ON BIOMEDICAL ENGINEERING 2022; 38:901-911. [DOI: 10.1007/s42600-022-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/07/2022] [Indexed: 09/05/2024]
|
7
|
Wei Y, Dai Z, Dong Y, Filippov A, Ji X, Laaksonen A, Shah FU, An R, Fuchs H. Molecular interactions of ionic liquids with SiO 2 surfaces determined from colloid probe atomic force microscopy. Phys Chem Chem Phys 2022; 24:12808-12815. [PMID: 35593233 DOI: 10.1039/d2cp00483f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ionic liquids (ILs) interact strongly with many different types of solid surfaces in a wide range of applications, e.g. lubrication, energy storage and conversion, etc. However, due to the nearly immeasurable large number of potential ILs available, identifying the appropriate ILs for specific solid interfaces with desirable properties is a challenge. Theoretical studies are highly useful for effective development of design and applications of these complex molecular systems. However, obtaining reliable force field models and interaction parameters is highly demanding. In this work, we apply a new methodology by deriving the interaction parameters directly from the experimental data, determined by colloid probe atomic force microscopy (CP-AFM). The reliability of the derived interaction parameters is tested by performing molecular dynamics simulations to calculate translational self-diffusion coefficients and comparing them with those obtained from NMR diffusometry.
Collapse
Affiliation(s)
- Yudi Wei
- Herbert Gleiter Institute of Nanoscience, Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Zhongyang Dai
- High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen 518055, Guangdong, P. R. China
| | - Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden.,Medical and Biological Physics, Kazan State Medical University, 420012 Kazan, Russia
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.,Division of Physical Chemistry, Department of Materials and Environmental chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden.,Center of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania.,State Key Laboratory of Materials Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Rong An
- Herbert Gleiter Institute of Nanoscience, Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience, Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. .,Center for Nanotechnology (CeNTech), Institute of Physics, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|