1
|
Moncada F, Quintero W, Posada E, Pettersson LGM, Reyes A. A nuclear configuration interaction approach to study nuclear spin effects: an application to ortho- and para- 3 He 2 @C 60. Chemphyschem 2024; 25:e202300498. [PMID: 38055206 DOI: 10.1002/cphc.202300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
We introduce a non-orthogonal configuration interaction approach to investigate nuclear quantum effects on energies and densities of confined fermionic nuclei. The Hamiltonian employed draws parallels between confined systems and many-electron atoms, where effective non-Coulombic potentials represent the interactions of the trapped particles. One advantage of this method is its generality, as it offers the potential to study the nuclear quantum effects of various confined species affected by effective isotropic or anisotropic potentials. As a first application, we analyze the quantum states of two 3 He atoms encapsulated in C60 . At the Hartree-Fock level, we observe the breaking of spin and spatial symmetries. To ensure wavefunctions with the correct symmetries, we mix the broken-symmetry Hartree-Fock states within the non-orthogonal configuration interaction expansion. Our proposed approach predicts singly and triply degenerate ground states for the singlet (para-3 He2 @C60 ) and triplet (ortho-3 He2 @C60 ) nuclear spin configurations, respectively. The ortho-3 He2 @C60 ground state is 5.69 cm-1 higher in energy than the para-3 He2 @C60 ground state. The nuclear densities obtained for these states exhibit the icosahedral symmetry of the C60 embedding potential. Importantly, our calculated energies for the lowest 85 states are in close agreement with perturbation theory results based on a harmonic oscillator plus rigid rotor model of 3 He2 @C60 .
Collapse
Affiliation(s)
- Félix Moncada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - William Quintero
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - Edwin Posada
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
| | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| |
Collapse
|
2
|
Fernández B, Pi M, de Lara-Castells MP. Superfluid helium droplet-mediated surface-deposition of neutral and charged silver atomic species. Phys Chem Chem Phys 2023. [PMID: 37317779 DOI: 10.1039/d3cp01303k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experimental and theoretical work has delivered evidence of the helium nanodroplet-mediated synthesis and soft-landing of metal nanoparticles, nanowires, clusters, and single atoms on solid supports. Recent experimental advances have allowed the formation of charged metal clusters into multiply charged helium nanodroplets. The impact of the charge of immersed metal species in helium nanodroplet-mediated surface deposition is proved by considering silver atoms and cations at zero-temperature graphene as the support. By combining high-level ab initio intermolecular interaction theory with a full quantum description of the superfluid helium nanodroplet motion, evidence is presented that the fundamental mechanism of soft-deposition is preserved in spite of the much stronger interaction of charged species with surfaces, with high-density fluctuations in the helium droplet playing an essential role in braking them. Corroboration is also presented that the soft-landing becomes favored as the helium nanodroplet size increases.
Collapse
Affiliation(s)
- Berta Fernández
- Department of Physical Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
3
|
Morcillo-Arencibia MF, Alcaraz-Pelegrina JM, Sarsa AJ, Randazzo JM. An off-center endohedrally confined hydrogen molecule. Phys Chem Chem Phys 2022; 24:22971-22977. [PMID: 36125249 DOI: 10.1039/d2cp03456e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we address the problem of a C60 endohedrally confined hydrogen molecule through a configuration-interaction approach to electronic dynamics. Modeling the confinement by means of a combination of two Woods-Saxon potentials, we analyze the stability of the system as a function of the nuclei position through the behavior of the electronic spectrum. After studying the convergence of two different partial wave expansions, one related to the molecular Coulomb centers and the other related to the off-centering of the C60 well, we found that the second approach provides a more accurate description of the system. Furthermore, we observed that the inter-atomic distance changes based on the position of the atoms inside the cavity. Thus, to obtain the most favourable energetic configuration for the molecule, it should be positioned inside the cavity next to the structure, where its size decreases.
Collapse
Affiliation(s)
- Milagros F Morcillo-Arencibia
- Departamento de Física, Campus de Rabanales, Edif. C2. Universidad de Córdoba, E-14071 Córdoba, Spain. .,Centro Atómico Bariloche, CNEA and CONICET, S. C. de Bariloche, Río Negro, Argentina
| | | | - Antonio J Sarsa
- Departamento de Física, Campus de Rabanales, Edif. C2. Universidad de Córdoba, E-14071 Córdoba, Spain.
| | - Juan M Randazzo
- Centro Atómico Bariloche, CNEA and CONICET, S. C. de Bariloche, Río Negro, Argentina
| |
Collapse
|
4
|
John C, Swathi RS. An anisotropic dressed pairwise potential model for the adsorption of noble gases on boron nitride sheets. Phys Chem Chem Phys 2022; 24:2554-2566. [PMID: 35024709 DOI: 10.1039/d1cp04815e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of empirical potentials with accurate parameterization is indispensable while modeling large-scale systems. Herein, we report accurate parameterization of an anisotropic dressed pairwise potential model (PPM) for probing the adsorption of noble gases, He, Ne, Ar and Kr on boron nitride sheets. For the noble gas binding on B48N48H24, we carried out a least-squares fit analysis of the dispersion and dispersionless contributions of the interaction potential separately. The transferability of the parameters for a range of molecular model systems of boron nitride is further established. The dressed PPM is then used in conjunction with a global optimization technique, namely particle swarm optimization (PSO) to assess the possibility of performing large-scale simulations with the PPM-PSO methodology. The results obtained for the adsorption of 2-5 noble gases on BN sheets establish the proof-of-concept, encouraging the pursuit of large-scale simulations using the PPM-PSO approach.
Collapse
Affiliation(s)
- Chris John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram, India.
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram, India.
| |
Collapse
|
5
|
de Lara-Castells MP, Mitrushchenkov AO. Mini Review: Quantum Confinement of Atomic and Molecular Clusters in Carbon Nanotubes. Front Chem 2021; 9:796890. [PMID: 34957050 PMCID: PMC8704106 DOI: 10.3389/fchem.2021.796890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
We overview our recent developments on a computational approach addressing quantum confinement of light atomic and molecular clusters (made of atomic helium and molecular hydrogen) in carbon nanotubes. We outline a multi-scale first-principles approach, based on density functional theory (DFT)-based symmetry-adapted perturbation theory, allowing an accurate characterization of the dispersion-dominated particle–nanotube interaction. Next, we describe a wave-function-based method, allowing rigorous fully coupled quantum calculations of the pseudo-nuclear bound states. The approach is illustrated by showing the transition from molecular aggregation to quasi-one-dimensional condensed matter systems of molecular deuterium and hydrogen as well as atomic 4He, as case studies. Finally, we present a perspective on future-oriented mixed approaches combining, e.g., orbital-free helium density functional theory (He-DFT), machine-learning parameterizations, with wave-function-based descriptions.
Collapse
|
6
|
Sahoo T, Serwatka T, Roy PN. A path integral ground state approach for asymmetric top rotors with nuclear spin symmetry: Application to water chains. J Chem Phys 2021; 154:244305. [PMID: 34241367 DOI: 10.1063/5.0053051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A path integral ground state (PIGS) approach for the simulation of asymmetric top rotors is presented. The method is based on Monte Carlo sampling of angular degrees of freedom. A symmetry-adapted rotational density matrix is used to account for nuclear spin statistics. To illustrate the method, ground-state properties of collections of para-water molecules confined to a one-dimensional lattice are computed. Those include energetic and structural observables. An advantage of the PIGS method is that expectation values can be obtained directly since the square of the wavefunction is sampled during a simulation. To benchmark the method, ground state energies and orientational distributions are computed using exact diagonalization for a single para-water molecule in an external field using a finite basis of symmetric top eigenfunctions. Benchmark results are also provided for N = 2 para-water molecules pinned to lattice sites at various distances to sample the crossover from hydrogen bonding to the dipole-dipole interaction regime. Excellent agreement between the PIGS results and the finite basis set calculations is observed. A thorough analysis of the convergence in terms of the imaginary time propagation length and systematic Trotter error is performed. The PIGS approach is then applied to a chain of N = 11 water molecules, and an equation of state is constructed in terms of the intermolecular separation. Ordering effects are also studied, and a transition between hydrogen bonding to dipole-dipole alignment is observed. The method is scalable and can also be applied in higher dimensions.
Collapse
Affiliation(s)
- Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|