1
|
Montes de Oca-Estévez MJ, Valdés Á, Prosmiti R. A kernel-based machine learning potential and quantum vibrational state analysis of the cationic Ar hydride (Ar 2H +). Phys Chem Chem Phys 2024; 26:7060-7071. [PMID: 38345626 DOI: 10.1039/d3cp05865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
One of the most fascinating discoveries in recent years, in the cold and low pressure regions of the universe, was the detection of ArH+ and HeH+ species. The identification of such noble gas-containing molecules in space is the key to understanding noble gas chemistry. In the present work, we discuss the possibility of [Ar2H]+ existence as a potentially detectable molecule in the interstellar medium, providing new data on possible astronomical pathways and energetics of this compound. As a first step, a data-driven approach is proposed to construct a full 3D machine-learning potential energy surface (ML-PES) via the reproducing kernel Hilbert space (RKHS) method. The training and testing data sets are generated from CCSD(T)/CBS[56] computations, while a validation protocol is introduced to ensure the quality of the potential. In turn, the resulting ML-PES is employed to compute vibrational levels and molecular spectroscopic constants for the cation. In this way, the most common isotopologue in ISM, [36Ar2H]+, was characterized for the first time, while simultaneously, comparisons with previously reported values available for [40Ar2H]+ are discussed. Our present data could serve as a benchmark for future studies on this system, as well as on higher-order cationic Ar-hydrides of astrophysical interest.
Collapse
Affiliation(s)
- María Judit Montes de Oca-Estévez
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
- Atelgraphics S.L., Mota de Cuervo 42, 28043, Madrid, Spain
| | - Álvaro Valdés
- Escuela de Física, Universidad Nacional de Colombia, Sede Medellín, A. A., 3840, Medellín, Colombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
2
|
Mabrouk N, Dhiflaoui J, Saidi S, Bejaoui M, Alharzali N, Berriche H. Potential Energy Surface and Bound States of Ne-Li 2+( X2Σ g+) van der Waals Complex Based on Ab Initio Calculations. J Phys Chem A 2023; 127:9167-9177. [PMID: 37890154 PMCID: PMC10641847 DOI: 10.1021/acs.jpca.3c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Theoretical studies of the potential energy surface and vibrational bound states calculations were performed for the ground state of the Ne-Li2+(X2Σg+) van der Waals (vdW) complex. The intermolecular interactions were investigated by using an accurate monoconfigurational RCCSD(T) method and large basis sets (aug-cc-pVnZ, n = T, Q, 5), extrapolated to the complete basis set (CBS) limit. In turn, the obtained raw data from RCCSD(T)/CBS(Q5) calculations were numerically interpolated using the Morse + vdW model and the Reproducing Kernel Hilbert Space (RKHS) polynomial method to generate analytic expressions for the 2D-PES. The RKHS interpolated PES was then used to assess the bound states of the Ne-Li2+(X2Σg+) system through nuclear quantum calculations. By studying the aspect of the potential energy surface, the analysis sheds light on the behavior of the Ne-Li2+(X2Σg+) complex and its interactions between repulsive and attractive forces with other particles. By examining the vibrational states and wave functions of the system, the researchers were able to gain a better understanding of the behavior of the Ne-Li2+(X2Σg+) complex. The calculated radial and angular distributions for all even and odd symmetries are discussed in detail. We observe that the radial distributions exhibit a more complicated nodal structure, representing stretching vibrational behavior in the neon atom along its radial coordinate. For the highest bound states, the situation is very different, and the energies surpass the angular barrier.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Jamila Dhiflaoui
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Samah Saidi
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Department
of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Mohamed Bejaoui
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Nissrin Alharzali
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 814 99, Slovakia
| | - Hamid Berriche
- Laboratory
of Interfaces and Advanced Materials, Physics Department, Faculty
of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Mathematics
and Physics Department, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al-Khaimah 10021, United Arab Emirates
| |
Collapse
|
3
|
Saidi S, Mabrouk N, Dhiflaoui J, Berriche H. Structural, Spectroscopic, and Dynamic Properties of Li2+(X2∑g+) in Interaction with Krypton Atom. Molecules 2023; 28:5512. [PMID: 37513385 PMCID: PMC10385072 DOI: 10.3390/molecules28145512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
We report a computational study of the potential energy surface (PES) and vibrational bound states for the ground electronic state of Li2+Kr. The PES was calculated in Jacobi coordinates at the Restricted Coupled Cluster method RCCSD(T) level of calculation and using aug-cc-pVnZ (n = 4 and 5) basis sets. Afterward, this PES is extrapolated to the complete basis set (CBS) limit for correction. The obtained interaction energies were, then, interpolated numerically using the reproducing kernel Hilbert space polynomial (RKHS) approach to produce analytic expressions for the 2D-PES. The analytical PES is used to solve the nuclear Schrodinger equation to determine the bound states' eigenvalues of Li2+Kr for a J = 0 total angular momentum configuration and to understand the effects of orientational anisotropy of the forces and the interplay between the repulsive and attractive interaction within the potential surface. In addition, the radial and angular distributions of some selected bound state levels, which lie below, around, and above the T-shaped 90° barrier well, are calculated and discussed. We note that the radial distributions clearly acquire a more complicated nodal structure and correspond to bending and stretching vibrational motions "mode" of the Kr atom along the radial coordinate, and the situation becomes very different at the highest bound states levels with energies higher than the T-shaped 90° barrier well. The shape of the distributions becomes even more complicated, with extended angular distributions and prominent differences between even and odd states.
Collapse
Affiliation(s)
- Samah Saidi
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nesrine Mabrouk
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Jamila Dhiflaoui
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Hamid Berriche
- Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
- Mathematics and Natural Sciences Department, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al-Khaimah 10021, United Arab Emirates
| |
Collapse
|
4
|
Rodríguez-Segundo R, Gijón A, Prosmiti R. Quantum molecular simulations of micro-hydrated halogen anions. Phys Chem Chem Phys 2022; 24:14964-14974. [PMID: 35686995 DOI: 10.1039/d2cp01396g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the results of a detailed and accurate investigation focused on structures and energetics of poly-hydrated halides employing first-principles polarizable halide-water potentials to describe the underlying forces. Following a bottom-up data-driven potential approach, we initially looked into the classical behavior of higher-order X-(H2O)N clusters. We have located several low-lying energies, such as global and local minima, structures for each cluster, with various water molecules (up to N = 8) surrounding the halide anion (X- = F-, Cl-, Br-, I-), employing an evolutionary programming method. It is found that the F--water clusters exhibit different structural configurations than the heavier halides, however independently of the halide anion, all clusters show in general a selective growth with the anion preferring to be connected to the outer shell of the water molecule arrangements. In turn, path-integral molecular dynamics simulations are performed to incorporate explicitly nuclear quantum and thermal effects in describing the nature of halide ion microsolvation in such prototypical model systems. Our data reveal that at low finite temperatures, nuclear quantum effects affect certain structural properties, such as weakening hydrogen bonding between the halide anion and water molecules, with minor distortions in the water network beyond the first hydration shell, indicating local structure rearrangements. Such structural characteristics and the promising cluster size trends observed in the single-ion solvation energies motivated us to draw connections of small size cluster data to the limits of continuum bulk values, toward the investigation of the challenging computational modeling of bulk single ion hydration.
Collapse
Affiliation(s)
- Raúl Rodríguez-Segundo
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain. .,Atelgraphics S.L., Mota de Cuervo 42, 28043, Madrid, Spain
| | - Alfonso Gijón
- Materials Science Institute of Madrid (ICMM-CSIC), CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
5
|
A Benchmark Protocol for DFT Approaches and Data-Driven Models for Halide-Water Clusters. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051654. [PMID: 35268757 PMCID: PMC8924895 DOI: 10.3390/molecules27051654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Dissolved ions in aqueous media are ubiquitous in many physicochemical processes, with a direct impact on research fields, such as chemistry, climate, biology, and industry. Ions play a crucial role in the structure of the surrounding network of water molecules as they can either weaken or strengthen it. Gaining a thorough understanding of the underlying forces from small clusters to bulk solutions is still challenging, which motivates further investigations. Through a systematic analysis of the interaction energies obtained from high-level electronic structure methodologies, we assessed various dispersion-corrected density functional approaches, as well as ab initio-based data-driven potential models for halide ion-water clusters. We introduced an active learning scheme to automate the generation of optimally weighted datasets, required for the development of efficient bottom-up anion-water models. Using an evolutionary programming procedure, we determined optimized and reference configurations for such polarizable and first-principles-based representation of the potentials, and we analyzed their structural characteristics and energetics in comparison with estimates from DF-MP2 and DFT+D quantum chemistry computations. Moreover, we presented new benchmark datasets, considering both equilibrium and non-equilibrium configurations of higher-order species with an increasing number of water molecules up to 54 for each F, Cl, Br, and I anions, and we proposed a validation protocol to cross-check methods and approaches. In this way, we aim to improve the predictive ability of future molecular computer simulations for determining the ongoing conflicting distribution of different ions in aqueous environments, as well as the transition from nanoscale clusters to macroscopic condensed phases.
Collapse
|