1
|
Chatterjee S, Chowdhury T, Bagchi S. Solvation Dynamics and Microheterogeneity in Deep Eutectic Solvents. J Phys Chem B 2024; 128:12669-12684. [PMID: 39670634 DOI: 10.1021/acs.jpcb.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Deep eutectic solvents have attracted considerable attention due to their unique properties and their potential to replace conventional solvents in diverse applications, such as catalysis, energy storage, and green chemistry. However, despite their broad use, the microscopic mechanisms governing solvation dynamics and the role of hydrogen bonding in deep eutectic solvents remain insufficiently understood. In this article, we present our contributions toward unravelling the micro heterogeneity within deep eutectic solvents by combining vibrational Stark spectroscopy and two-dimensional infrared spectroscopy with molecular dynamics simulations. Our findings demonstrate how the composition, constituents, and addition of water significantly influence the heterogeneous hydrogen bonding network and solvent dynamics within these systems. These insights provide valuable guidance for the design of next-generation solvents tailored to specific applications. By integrating experimental and computational approaches, this work sheds light on the intricate relationship between solvation dynamics and nanostructure in deep eutectic solvents, ultimately paving the way for innovative advances in solvent design.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tubai Chowdhury
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Zubeltzu J, Rezabal E. Structural insights into carboxylic-acid based DES across H-bond donor ratios: impact of CL&Pol refinement. Phys Chem Chem Phys 2024; 26:27486-27497. [PMID: 39450431 DOI: 10.1039/d4cp03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Deep eutectic solvents (DES) are of significant interest due to their eco-friendly nature and vast applications. Carboxylic-acid-based choline chloride (ChCl) DES are notable for their roles in electrochemical, drug delivery, and biomass processing applications, with efficiency influenced by the ChCl : carboxylic acid ratio. Understanding these mechanisms requires detailed knowledge of their structure. This study investigates the choline chloride-lactic acid (ChCl:LA) DES structure using ab initio molecular dynamics simulations to assess the accuracy of the transferable and polarizable CL&Pol force field. We observe that the CL&Pol force field qualitatively captures primary interactions within the system, despite numerical discrepancies due to its transferable nature. To refine the original force field, we incorporate two improvements: tuning the σ parameter of the strongest hydrogen-bond interactions and incorporating the Tang-Toennies damping function to correct chloride ion overpolarization. The first adjustment enhances the targeted interactions and significantly improves the short-range structure of the entire hydrogen-bond network. The second refinement, although minimally impacting the structure at low LA ratios, proves critical at higher ratios by correcting the oversegregation of ionic molecules in the original force field. Consequently, it becomes essential for reliably depicting the medium and long-range structure of the system, highlighting that the specific parameter of the force field to be refined depends on the structural scale under investigation. Notably, the long-range structure results from the competition between choline and carboxylic acid for chloride, rebalanced by the suggested modifications, especially the overpolarization correction.
Collapse
Affiliation(s)
- Jon Zubeltzu
- Gipuzkoako Ingeniaritza Eskola, Europa Plaza, 1, Donostia, 20018, Euskadi, Spain.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea, 4, Donostia, 20018, Euskadi, Spain
| | - Elixabete Rezabal
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea, 4, Donostia, 20018, Euskadi, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Manuel Lardizabal Ibilbidea, 3, Donostia, 20018, Euskadi, Spain
| |
Collapse
|
3
|
Sil A, Sangeeta, Poonia V, Das S, Guchhait B. Molecular dynamics insights into the dynamical behavior of structurally modified water in aqueous deep eutectic solvents (ADES). J Chem Phys 2024; 161:164501. [PMID: 39435833 DOI: 10.1063/5.0223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Recent studies have demonstrated that the presence of water in deep eutectic solvents (DESs) significantly affects their dynamics, structure, and physical properties. Although the structural changes due to the addition of water are well understood, the microscopic dynamics of these changes have been rarely studied. Here, we performed molecular dynamics simulation of 30% (v/v) (∼0.57 molar fraction) water mixture of DES containing CH3CONH2 and NaSCN/KSCN at various salt fractions to understand the microscopic structure and dynamics of water. The simulated results reveal a heterogeneous environment for water molecules in aqueous DES (ADES), which is influenced by the nature of the cation. The diffusion coefficients of water in ADESs are significantly lower than that in neat water and concentrated aqueous NaSCN/KSCN solution. When Na+ ions are replaced by K+ ions in the ADES system, the diffusion coefficient increases, which is consistent with the measured nuclear magnetic resonance data. Self-dynamic structure factor for water and other simulated dynamic quantities, such as reorientation, hydrogen-bond, and residence time correlation functions, show markedly slower dynamics inside ADES than in the neat water and aqueous salt solution. Moreover, these dynamics become faster when Na+ ions in ADES are replaced by K+ ions. The results suggest that the structural environment of water in Na+-rich ADES is rigid due to the presence of cation-bound water and geometrically constrained water. The medium becomes less rigid as the KSCN fraction increases due to the relatively weaker interaction of K+ ions with water than Na+ ions, which accelerates the dynamical processes.
Collapse
Affiliation(s)
- Arnab Sil
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sangeeta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Vishnu Poonia
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Suman Das
- Department of Chemistry, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
4
|
Di Muzio S, Trequattrini F, Palumbo O, Roy P, Brubach JB, Paolone A. An Eutectic Mixture in the Tetrabutylammonium Bromide-Octanol System: Macroscopic and Microscopic Points of View. Chemphyschem 2024; 25:e202400219. [PMID: 38726706 DOI: 10.1002/cphc.202400219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Indexed: 06/21/2024]
Abstract
An eutectic mixture of tetrabutylammonium bromide and octanol in the molar ratio 1-10 exhibited a melting point of -17 °C. This system was investigated by means of infrared spectroscopy, in the liquid and in the solid state. Classical molecular dynamics was performed to study the fine details of the hydrogen bond interactions established in the mixture. Both octanol and the mixtures displayed an almost featureless far-infrared spectrum in the liquid state but it becomes highly structured in the solid phase. DFT calculations suggest that new vibrational modes appearing in the mixture at low temperatures may be related to the population of the higher energy conformers of the alcohol. Mid-infrared spectroscopy measurements evidenced no shift of the CH stretching bands in the mixture compared to the starting materials, while the OH stretching are blue shifted by a few cm-1. Consistently, molecular dynamics provides a picture of the mixture in which part of the hydrogen bonds (HB) of pure octanol is replaced by weaker HB formed with the Br anion. Due to these interactions the ionic couple becomes more separated. In agreement with this model, the lengths of all HB are much larger than those observed in mixtures containing acids reported in previous studies.
Collapse
Affiliation(s)
- Simone Di Muzio
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Trequattrini
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Oriele Palumbo
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pascale Roy
- Synchrotron Soleil, L'Orme des Merisier, 91190, Saint-Aubin, France
| | | | - Annalisa Paolone
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
5
|
Sepulveda-Montaño LX, Galindo JF, Kuroda DG. A new computational methodology for the characterization of complex molecular environments using IR spectroscopy: bridging the gap between experiments and computations. Chem Sci 2024; 15:d4sc03219e. [PMID: 39156932 PMCID: PMC11328912 DOI: 10.1039/d4sc03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
The molecular interactions and dynamics of complex liquid solutions are now routinely measured using IR and 2DIR spectroscopy. In particular, the use of the latter allows the determination of the frequency fluctuation correlation function (FFCF), while the former provides us with the average frequency. In turn, the FFCF can be used to quantify the vibrational dynamics of a molecule in a solution, and the center frequency provides details about the chemical environment, solvatochromism, of the vibrational mode. In simple solutions, the IR methodology can be used to unambiguously assign the interactions and dynamics observed by a molecule in solution. However, in complex environments with molecular heterogeneities, this assignment is not simple. Therefore, a method that allows for such an assignment is essential. Here, a parametrization free method, called Instantaneous Frequencies of Molecules or IFM, is presented. The IFM method, when coupled to classical molecular simulations, can predict the FFCF of a molecule in solutions. Here, N-methylacetamide (NMA) in seven different chemical environments, both simple and complex, is used to test this new method. The results show good agreement with experiments for the NMA solvatochromism and FFCF dynamics, including characteristic times and amplitudes of fluctuations. In addition, the new method shows equivalent or improved results when compared to conventional frequency maps. Overall, the use of the new method in conjunction with molecular dynamics simulations allows unlocking the full potential of IR spectroscopy to generate molecular maps from vibrational observables, capable of describing the interaction landscape of complex molecular systems.
Collapse
Affiliation(s)
| | - Johan F Galindo
- Department of Chemistry, Universidad Nacional de Colombia Sede Bogotá Bogotá 111321 Colombia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University Baton Rouge Louisiana 70803 USA
| |
Collapse
|
6
|
Malik A, Kashyap HK. Solvation Shell Anatomy of H 2S and CO Dissolved in Reline and Ethaline Deep Eutectic Solvents. J Phys Chem B 2023; 127:10392-10403. [PMID: 37983272 DOI: 10.1021/acs.jpcb.3c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Rising atmospheric concentrations of anthropogenic hydrogen sulfide (H2S) and carbon monoxide (CO) as a result of industrialization have encouraged researchers to explore innovative technologies for capturing these gases. Deep eutectic solvents (DESs) are an alternative media for mitigating H2S and CO emissions. Herein, we have employed ab initio molecular dynamics simulations to investigate the structures of the nearest-neighbor solvation shells surrounding H2S and CO when they are dissolved in reline and ethaline DESs. We aim to delineate the structural arrangement responsible for favorable H2S and CO capture by analyzing the key interactions between H2S and CO solutes with various components of the DESs. We observe that in the reline-H2S system, chloride and carbonyl oxygen of urea are found to have the closest distance interaction with hydrogen atoms of the H2S solute. The sulfur atom of H2S is found to be predominantly solvated by hydrogen and oxygen atoms of urea molecules and the hydroxyl hydrogen of choline cations. The chloride ions and ethylene glycol molecules predominantly govern the solvation of H2S in the ethaline-H2S system. In both the DESs, H2S is solvated by the hydroxyl group of the choline cations rather than by their ammonium group. In the reline-CO system, all the atoms of urea along with chloride dominate the immediate solvation shell around CO. In the ethaline-CO system, hydroxyl oxygen and hydrogen atoms of ethylene glycol are found in the nearest solvation structure around CO. Both the DESs exhibit a stronger solvent-solute charge-transfer tendency toward the H2S solute compared to CO.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Tarif E, Das N, Sen P. Does Viscosity Decoupling Guarantee Dynamic Heterogeneity? A Clue through an Excitation and Emission Wavelength-Dependent Time-Resolved Fluorescence Anisotropy Study. J Phys Chem B 2023; 127:7162-7173. [PMID: 37549044 DOI: 10.1021/acs.jpcb.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Traditionally, deviation from Stokes-Einstein-Debye (SED) relation in terms of viscosity dependence of medium dynamics, i.e., τ x ∝ ( η T ) p with p ≠ 1, is taken as a signature of dynamic heterogeneity. However, it does not guarantee medium heterogeneity, as the decoupling may also originate from the deviation of the basic assumption of SED. Here, we developed a method to find a stronger relation between viscosity decoupling (p ≠ 1) and dynamic heterogeneity in terms of rotational motion. Our approach exploited the fact that in heterogeneous media, a solvatochromic probe will be solvated to a different extent at different microdomains (subpopulations), and photoselection of these subpopulations can be achieved by excitation or emission wavelength-dependent measurements. We hypothesized that the dynamics of a homogeneous system might show viscosity decoupling, but the extent of decoupling at different excitations (or at different emissions) should not be different. On the other hand, in a heterogeneous medium, this extent of viscosity decoupling (p-value) should be different at different excitations (or at different emissions). As proof of concept, we investigated three versatile solvent media: squalane (viscous molecular liquid), 1-ethyle-3-methylimidazolium ethyl sulfate ionic liquid (IL), and [0.78 acetamide + 0.22 LiNO3] deep eutectic solvent (DES). We found that squalane is homogeneous, although it shows fractional viscosity dependence (p ≠ 1). Interestingly, mild heterogeneity in IL and significant heterogeneity in the DES were observed. Overall, we conclude that the difference in the p-value as a function of excitation (or emission) wavelength-dependent might be a superior way for the detection of dynamic heterogeneity.
Collapse
Affiliation(s)
- Ejaj Tarif
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| |
Collapse
|
8
|
AlYammahi J, Darwish AS, Lemaoui T, Boublia A, Benguerba Y, AlNashef IM, Banat F. Molecular Guide for Selecting Green Deep Eutectic Solvents with High Monosaccharide Solubility for Food Applications. ACS OMEGA 2023; 8:26533-26547. [PMID: 37521623 PMCID: PMC10373463 DOI: 10.1021/acsomega.3c03326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Monosaccharides play a vital role in the human diet due to their interesting biological activity and functional properties. Conventionally, sugars are extracted using volatile organic solvents (VOCs). Deep eutectic solvents (DESs) have recently emerged as a new green alternative to VOCs. Nonetheless, the selection criterion of an appropriate DES for a specific application is a very difficult task due to the designer nature of these solvents and the theoretically infinite number of combinations of their constituents and compositions. This paper presents a framework for screening a large number of DES constituents for monosaccharide extraction application using COSMO-RS. The framework employs the activity coefficients at infinite dilution (γi∞) as a measure of glucose and fructose solubility. Moreover, the toxicity analysis of the constituents is considered to ensure that selected constituents are safe to work with. Finally, the obtained viscosity predictions were used to select DESs that are not transport-limited. To provide more insights into which functional groups are responsible for more effective monosaccharide extraction, a structure-solubility analysis was carried out. Based on an analysis of 212 DES constituents, the top-performing hydrogen bond acceptors were found to be carnitine, betaine, and choline chloride, while the top-performing hydrogen bond donors were oxalic acid, ethanolamine, and citric acid. A research initiative was presented in this paper to develop robust computational frameworks for selecting optimal DESs for a given application to develop an effective DES design strategy that can aid in the development of novel processes using DESs.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmad S. Darwish
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Tarek Lemaoui
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Abir Boublia
- Laboratoire
de Physico-Chimie des Hauts Polymères (LPCHP), Département
de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Yacine Benguerba
- Laboratoire
de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif 19000, Algeria
| | - Inas M. AlNashef
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
9
|
Zhou Q, Su X, Yao Y, He B, Jin F, Gao M, Wang Q, Feng G, Li B, Liu R, Dong J. Preparation of a hydrophobic deep eutectic solvent and its application in the detection of quinolone residues in cattle urine. Anal Bioanal Chem 2023:10.1007/s00216-023-04749-w. [PMID: 37243734 DOI: 10.1007/s00216-023-04749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
Enrichment for the detection of quinolone residues is usually cumbersome and requires large amounts of toxic organic reagents. Therefore, this study synthesized a low-toxicity hydrophobic deep eutectic solvent (DES) with DL-menthol and p-cresol, which was then characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and thermal analysis. A simple and rapid vortex-assisted liquid-liquid microextraction method was developed based on this DES for the extraction of eight quinolones from cattle urine. The optimal extraction conditions were screened by examining the DES volume, extraction temperature, vortex time, and salt concentration. Under the optimal conditions, the linear ranges of the eight quinolones were 1 ~ 100 μg/L with good linearity (r2 was 0.998 ~ 0.999), and the limits of detection and quantification were 0.08 ~ 0.30 μg/L and 0.27 ~ 0.98 μg/L, respectively. The average extraction recoveries of spiked cattle urine samples were 70.13 ~ 98.50% with relative standard deviations below 13.97%. This method can provide a reference for the pre-treatment of quinolone residue detection.
Collapse
Affiliation(s)
- Qian Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - XiaoLu Su
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - YanXing Yao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Bin He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - FengMei Jin
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - MengYue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Qi Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - GuiPing Feng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - BaoXi Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jun Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
10
|
Malik A, Kashyap HK. Solvation Shell Structures of Ammonia in Reline and Ethaline Deep Eutectic Solvents. J Phys Chem B 2023; 127:2499-2510. [PMID: 36912865 DOI: 10.1021/acs.jpcb.2c07929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Because of increasing atmospheric anthropogenic ammonia (NH3) emission, researchers are devising new techniques to capture NH3. Deep eutectic solvents (DESs) are found as potential media for NH3 mitigation. In the present study, we have carried out ab initio molecular dynamics (AIMD) simulations to decipher the solvation shell structures of an ammonia solute in reline (1:2 mixture of choline chloride and urea) and ethaline (1:2 mixture of choline chloride and ethylene glycol) DESs. We aim to resolve the fundamental interactions which help stabilize NH3 in these DESs, focusing on the structural arrangement of the DES species in the nearest solvation shell around NH3 solute. In reline, the hydrogen atoms of NH3 are preferentially solvated by chloride anions and the carbonyl oxygen atoms of urea. The nitrogen atom of NH3 renders hydrogen bonding with hydroxyl hydrogen of the choline cation. The positively charged head groups of the choline cations prefer to stay away from NH3 solute. In ethaline, strong hydrogen bonding interaction exists between the nitrogen atom of NH3 and hydroxyl hydrogen atoms of ethylene glycol. The hydrogen atoms of NH3 are found to be solvated by hydroxyl oxygen atoms of ethylene glycol and choline cation. While ethylene glycol molecules play a crucial role in solvating NH3, the chloride anions remain passive in deciding the first solvation shell. In both the DESs, choline cations approach NH3 from their hydroxyl group side. We observe slightly stronger solute-solvent charge transfer and hydrogen bonding interaction in ethaline than those in reline.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Structural Evolution of the Butylated Hydroxytoluene/Menthol Hydrophobic Eutectic Solvent upon Methanol and Ethanol Cosolvent Addition. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Liquid structure of a water-based, hydrophobic and natural deep eutectic solvent: the case of thymol-water. A Molecular Dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Malik A, Kashyap HK. Solvent Organization around Methane Dissolved in Archetypal Reline and Ethaline Deep Eutectic Solvents as Revealed by AIMD Investigation. J Phys Chem B 2022; 126:6472-6482. [PMID: 35977089 DOI: 10.1021/acs.jpcb.2c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of the rising concentration of harmful greenhouse gases like methane in the atmosphere, researchers are striving for developing novel techniques for capturing these gases. Recently, neoteric liquids such as deep eutectic solvents (DESs) have emerged as an efficient means of sequestration of methane. Herein, we have performed ab initio molecular dynamics (AIMD) simulations to elucidate the solvation structure around a methane molecule dissolved in reline and ethaline DESs. We aim to elicit the structural organization of different constituents of the DESs in the vicinity of methane, particularly highlighting the key interactions that stabilize such gases in DESs. We observe quite different solvation structures of methane in the two DESs. In ethaline, chloride ions play an active role in solvating methane. Instead, in reline, chloride ions do not interact much with the methane molecule in the first solvation shell. In reline, choline cations approach the methane molecule from their hydroxyl group side, whereas urea molecules approach methane from their carbonyl oxygen as well as amide group sides. In ethaline, ethylene glycol and Cl- dominate the nearest neighbor solvation structure around the methane molecule. In both the DESs, we do not observe any significant methane-DES charge transfer interactions, apart from what is present between choline cation and Cl- anion.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
14
|
Malik A, Dhattarwal HS, Kashyap HK. An Overview of Structure and Dynamics Associated with Hydrophobic Deep Eutectic Solvents and Their Applications in Extraction Processes. Chemphyschem 2022; 23:e202200239. [PMID: 35702808 DOI: 10.1002/cphc.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Recent development of novel water-immiscible green solvents known as hydrophobic deep eutectic solvents (HDESs) has opened the gates for applications requiring media where presence of water is undesirable. Ever since they were prepared, researchers have used HDESs in diverse fields such as extraction processes, CO 2 sequestration, membrane formation, and catalysis. The microstructure and dynamics associated with the species comprising HDESs guide their suitability for specific applications. For example, varying the alkyl tail length of HDES components significantly affects the dynamics of the components and thus helps in tuning the efficiency of extraction processes. The development of HDESs is still in infancy and very few theoretical studies are available in the literature that help in understanding the structure and dynamics of HDESs. This review highlights the recent work focused on the microscopic structure and dynamics of HDESs and their potential applications, particularly in extraction processes. We have also provided a glimpse of how the integration of experiments and computational techniques can help understand the mechanism of extraction processes.
Collapse
Affiliation(s)
- Akshay Malik
- Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Harender S Dhattarwal
- IIT Delhi: Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Hemant Kumar Kashyap
- Indian Institute of Technology Delhi, Department of Chemistry, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, INDIA
| |
Collapse
|
15
|
Busato M, Tofoni A, Mannucci G, Tavani F, Del Giudice A, Colella A, Giustini M, D'Angelo P. On the Role of Water in the Formation of a Deep Eutectic Solvent Based on NiCl 2·6H 2O and Urea. Inorg Chem 2022; 61:8843-8853. [PMID: 35616906 PMCID: PMC9199011 DOI: 10.1021/acs.inorgchem.2c00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The metal-based deep
eutectic solvent (MDES) formed by NiCl2·6H2O and urea in 1:3.5 molar ratio has been
prepared for the first time and characterized from a structural point
of view. Particular accent has been put on the role of water in the
MDES formation, since the eutectic could not be obtained with the
anhydrous form of the metal salt. To this end, mixtures at different
water/MDES molar ratios (W) have been studied with
a combined approach exploiting molecular dynamics and ab initio simulations, UV–vis and near-infra-red spectroscopies, small-
and wide-angle X-ray scattering, and X-ray absorption spectroscopy
measurements. In the pure MDES, a close packing of Ni2+ ion clusters forming oligomeric agglomerates is present thanks to
the mediation of bridging chloride anions and water molecules. Conversely,
urea poorly coordinates the metal ion and is mostly found in the interstitial
regions among the Ni2+ ion oligomers. This nanostructure
is disrupted upon the introduction of additional water, which enlarges
the Ni–Ni distances and dilutes the system up to an aqueous
solution of the MDES constituents. In the NiCl2·6H2O 1:3.5 MDES, the Ni2+ ion is coordinated on average
by one chloride anion and five water molecules, while water easily
saturates the metal solvation sphere to provide a hexa-aquo coordination
for increasing W values. This multidisciplinary study
allowed us to reconstruct the structural arrangement of the MDES and
its aqueous mixtures on both short- and intermediate-scale levels,
clarifying the fundamental role of water in the eutectic formation
and challenging the definition at the base of these complex systems. The metal-based deep eutectic solvent
formed by NiCl2·6H2O and urea in 1:3.5
a molar ratio was
prepared for the first time, and its aqueous mixtures were characterized
from a structural point of view, highlighting the fundamental role
of water in the eutectic formation.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Alessandro Tofoni
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Giorgia Mannucci
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Francesco Tavani
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Andrea Colella
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Mauro Giustini
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Paola D'Angelo
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| |
Collapse
|
16
|
Jin X, Zhang Y, Wang JQ, Huo J, Wang LM. Quantifying Concentration Fluctuations in Binary Glass-Forming Systems by Small- and Wide-Angle X-ray Scattering. J Phys Chem Lett 2022; 13:2205-2210. [PMID: 35232020 DOI: 10.1021/acs.jpclett.2c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionality of amorphous multicomponent systems largely depends upon the miscibility among components, especially in systems such as amorphous drugs and electrolytes. An in-depth understanding of mixing behaviors of various constituents is necessitated. Here, we applied the small- and wide-angle X-ray scattering (SWAXS) technique to monitor the mixing behaviors in three typical glass-forming binary systems imposed by varied heat of mixing. It is found that the Porod invariant (Q) determined at the glass transition temperature is remarkably enhanced as the concentration fluctuation becomes intensified. Meanwhile, the deviation of Q from the ideal mixing law is markedly weaken at elevated temperatures. The results unambiguously suggest that the degree of concentration fluctuations in mixing systems can be accurately quantified by the structural property, allowing the link to mixing thermodynamics.
Collapse
Affiliation(s)
- Xiao Jin
- State Key Laboratory of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Yanhui Zhang
- State Key Laboratory of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Juntao Huo
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Li-Min Wang
- State Key Laboratory of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| |
Collapse
|
17
|
Sahu S, Banu S, Sahu AK, Phani Kumar B, Mishra AK. Molecular-level insights into inherent heterogeneity of maline deep eutectic system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Kivelä H, Salomäki M, Vainikka P, Mäkilä E, Poletti F, Ruggeri S, Terzi F, Lukkari J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J Phys Chem B 2022; 126:513-527. [PMID: 35001628 PMCID: PMC8785191 DOI: 10.1021/acs.jpcb.1c08170] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.
Collapse
Affiliation(s)
- Henri Kivelä
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| | - Mikko Salomäki
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| | - Petteri Vainikka
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Ermei Mäkilä
- Department
of Physics and Astronomy, University of
Turku, FI-20014 Turku, Finland
- Doctoral
School for Chemical and Physical Sciences, University of Turku, FI-20014 Turku, Finland
| | - Fabrizio Poletti
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Stefano Ruggeri
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Fabio Terzi
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Jukka Lukkari
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| |
Collapse
|
19
|
Marchelli G, Ingenmey J, Hollóczki O, Chaumont A, Kirchner B. Hydrogen Bonding and Vaporization Thermodynamics in Hexafluoroisopropanol-Acetone and -Methanol Mixtures. A Joined Cluster Analysis and Molecular Dynamic Study. Chemphyschem 2022; 23:e202100620. [PMID: 34632686 PMCID: PMC9298724 DOI: 10.1002/cphc.202100620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Indexed: 12/23/2022]
Abstract
Binary mixtures of hexafluoroisopropanol with either methanol or acetone are analyzed via classical molecular dynamics simulations and quantum cluster equilibrium calculations. In particular, their populations and thermodynamic properties are investigated with the binary quantum cluster equilibrium method, using our in-house code Peacemaker 2.8, upgraded with temperature-dependent parameters. A novel approach, where the final density from classical molecular dynamics, has been used to generate the necessary reference isobars. The hydrogen bond network in both type of mixtures at molar fraction of hexafluoroisopropanol of 0.2, 0.5, and 0.8 respectively is investigated via the molecular dynamics trajectories and the cluster results. In particular, the populations show that mixed clusters are preferred in both systems even at 0.2 molar fractions of hexafluoroisopropanol. Enthalpies and entropies of vaporization are calculated for the neat and mixed systems and found to be in good agreement with experimental values.
Collapse
Affiliation(s)
- Gwydyon Marchelli
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| | - Johannes Ingenmey
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| | - Alain Chaumont
- Université de StrasbourgCNRS, CMC UMR 7140Laboratoire MSMF-67000StrasbourgFrance
| | - Barbara Kirchner
- Mulliken Center for Theoretical ChemistryRheinische Friedrich-Wilhelms-Universität BonnBeringstr. 4+6D-53115BonnGermany
| |
Collapse
|
20
|
Bulk and interfacial nanostructure and properties in deep eutectic solvents: Current perspectives and future directions. J Colloid Interface Sci 2021; 608:2430-2454. [PMID: 34785053 DOI: 10.1016/j.jcis.2021.10.163] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) are a tailorable class of solvents that are rapidly gaining scientific and industrial interest. This is because they are distinct from conventional molecular solvents, inherently tuneable via careful selection of constituents, and possess many attractive properties for applications, including catalysis, chemical extraction, reaction media, novel lubricants, materials chemistry, and electrochemistry. DESs are a class of solvents composed solely of hydrogen bond donors and acceptors with a melting point lower than the individual components and are often fluidic at room temperature. A unique feature of DESs is that they possess distinct bulk liquid and interfacial nanostructure, which results from intra- and inter-molecular interactions, including coulomb forces, hydrogen bonding, van der Waals interactions, electrostatics, dispersion forces, and apolar-polar segregation. This nanostructure manifests as preferential spatial arrangements of the different species, and exists over several length scales, from molecular- to nano- and meso-scales. The physicochemical properties of DESs are dictated by structure-property relationships; however, there is a significant gap in our understanding of the underlying factors which govern their solvent properties. This is a major limitation of DES-based technologies, as nanostructure can significantly influence physical properties and thus potential applications. This perspective provides an overview of the current state of knowledge of DES nanostructure, both in the bulk liquid and at solid interfaces. We provide definitions which clearly distinguish DESs as a unique solvent class, rather than a subset of ILs. An appraisal of recent work provides hints towards trends in structure-property relationships, while also highlighting inconsistencies within the literature suggesting new research directions for the field. It is hoped that this review will provide insight into DES nanostructure, their potential applications, and development of a robust framework for systematic investigation moving forward.
Collapse
|
21
|
Mariani A, Innocenti A, Varzi A, Passerini S. On the nanoscopic structural heterogeneity of liquid n-alkyl carboxylic acids. Phys Chem Chem Phys 2021; 23:20282-20287. [PMID: 34486605 DOI: 10.1039/d1cp02846d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein we report the first in-depth structural characterisation of simple linear carboxylic acids with alkyl tail length ranging from one to six carbon atoms. By means of the SWAXS technique, a pronounced nanoscopic heterogeneity evolving along the aliphatic portion of the molecule is highlighted. Via classical molecular dynamics, the origin of such heterogeneity is unambiguously assigned to the existence of aliphatic domains resulting from the self-segregation of the polar and apolar portions of the molecules. Furthermore, the structural correlation of aliphatic-separated polar domains is responsible for observing the so-called "pre-peak" in the SAXS region.
Collapse
Affiliation(s)
- Alessandro Mariani
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, Ulm 89081, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, Karlsruhe 76021, Germany.
| | - Alessandro Innocenti
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, Ulm 89081, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, Karlsruhe 76021, Germany.
| | - Alberto Varzi
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, Ulm 89081, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, Karlsruhe 76021, Germany.
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, Ulm 89081, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, Karlsruhe 76021, Germany.
| |
Collapse
|
22
|
Abbas UL, Qiao Q, Nguyen MT, Shi J, Shao Q. Structure and hydrogen bonds of hydrophobic deep eutectic
solvent‐aqueous liquid–liquid
interfaces. AIChE J 2021. [DOI: 10.1002/aic.17427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Usman L. Abbas
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Manh Tien Nguyen
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Qing Shao
- Department of Chemical and Materials Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
23
|
Malik A, Kashyap HK. Multiple evidences of dynamic heterogeneity in hydrophobic deep eutectic solvents. J Chem Phys 2021; 155:044502. [PMID: 34340384 DOI: 10.1063/5.0054699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hydrophobic deep eutectic solvents (HDESs) have gained immense popularity because of their promising applications in extraction processes. Herein, we employ atomistic molecular dynamics simulations to unveil the dynamics of DL-menthol (DLM) based HDESs with hexanoic (C6), octanoic (C8), and decanoic (C10) acids as hydrogen bond donors. The particular focus is on understanding the nature of dynamics with changing acid tail length. For all three HDESs, two modes of hydrogen bond relaxations are observed. We observe longer hydrogen bond lifetimes of the inter-molecular hydrogen bonding interactions between the carbonyl oxygen of the acid and hydroxyl oxygen of menthol with hydroxyl hydrogen of both acids and menthol. We infer strong hydrogen bonding between them compared to that between hydroxyl oxygen of acids and hydroxyl hydrogens of menthol and acids, marked by a faster decay rate and shorter hydrogen bond lifetime. The translational dynamics of the species in the HDES becomes slower with increasing tail length of the organic acid. Slightly enhanced caging is also observed for the HDES with a longer tail length of the acids. The evidence of dynamic heterogeneity in the displacements of the component molecules is observed in all the HDESs. From the values of the α-relaxation time scale, we observe that the molecular displacements become random in a shorter time scale for DLM-C6. The analysis of the self-van Hove function reveals that the overall distance covered by DLM and acid molecules in the respective HDES is more than what is expected from ideal diffusion. As marked by the shorter time scale associated with hole filling, the diffusion of the oxygen atom of menthol and the carbonyl oxygen of acid from one site to the other is fastest for hexanoic acid containing HDES.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|