1
|
Levien M, Yang L, van der Ham A, Reinhard M, John M, Purea A, Ganz J, Marquardsen T, Tkach I, Orlando T, Bennati M. Overhauser enhanced liquid state nuclear magnetic resonance spectroscopy in one and two dimensions. Nat Commun 2024; 15:5904. [PMID: 39003303 PMCID: PMC11246421 DOI: 10.1038/s41467-024-50265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Nuclear magnetic resonance (NMR) is fundamental in the natural sciences, from chemical analysis and structural biology, to medicine and physics. Despite its enormous achievements, one of its most severe limitations is the low sensitivity, which arises from the small population difference of nuclear spin states. Methods such as dissolution dynamic nuclear polarization and parahydrogen induced hyperpolarization can enhance the NMR signal by several orders of magnitude, however, their intrinsic limitations render multidimensional hyperpolarized liquid-state NMR a challenge. Here, we report an instrumental design for 9.4 Tesla liquid-state dynamic nuclear polarization that enabled enhanced high-resolution NMR spectra in one and two-dimensions for small molecules, including drugs and metabolites. Achieved enhancements of up to two orders of magnitude translate to signal acquisition gains up to a factor of 10,000. We show that hyperpolarization can be transferred between nuclei, allowing DNP-enhanced two-dimensional 13C-13C correlation experiments at 13C natural abundance. The enhanced sensitivity opens up perspectives for structural determination of natural products or characterization of drugs, available in small quantities. The results provide a starting point for a broader implementation of DNP in liquid-state NMR.
Collapse
Affiliation(s)
- Marcel Levien
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Luming Yang
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alex van der Ham
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Maik Reinhard
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
| | - Michael John
- Institute of Organic and Biomolecular Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 2, 37077, Göttingen, Germany
| | - Armin Purea
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Jürgen Ganz
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | | | - Igor Tkach
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Tomas Orlando
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., 32310, Tallahassee, FL, USA
| | - Marina Bennati
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Grazia Concilio M, Frydman L. Steady state effects introduced by local relaxation modes on J-driven DNP-enhanced NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107542. [PMID: 37672989 DOI: 10.1016/j.jmr.2023.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
One of solution-state Nuclear Magnetic Resonance (NMR)'s main weaknesses, is its relative insensitivity. J-driven Dynamic Nuclear Polarization (JDNP) was recently proposed for enhancing solution-state NMR's sensitivity, by bypassing the limitations faced by conventional Overhauser DNP (ODNP), at the high magnetic fields where most analytical research is performed. By relying on biradicals with inter-electron exchange couplings Jex on the order of the electron Larmor frequency ωE, JDNP was predicted to introduce a transient enhancement in NMR's nuclear polarization at high magnetic fields, and for a wide range of rotational correlation times of medium-sized molecules in conventional solvents. This communication revisits the JDNP proposal, including additional effects and conditions that were not considered in the original treatment. These include relaxation mechanisms arising from local vibrational modes that often dominate electron relaxation in organic radicals, as well as the possibility of using biradicals with Jex of the order of the nuclear Larmor frequency ωN as potential polarizing agents. The presence of these new relaxation effects lead to variations in the JDNP polarization mechanism originally proposed, and indicate that triplet-to-singlet cross-relaxation processes may lead to a nuclear polarization enhancement that persists even at steady states. The physics and potential limitations of the ensuing theoretical derivations, are briefly discussed.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Concilio MG, Frydman L. Microwave-free J-driven dynamic nuclear polarization: A proposal for enhancing the sensitivity of solution-state NMR. Phys Rev E 2023; 107:035303. [PMID: 37073023 DOI: 10.1103/physreve.107.035303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
J-driven dynamic nuclear polarization (JDNP) was recently proposed for enhancing the sensitivity of solution-state nuclear magnetic resonance (NMR), while bypassing the limitations faced by conventional (Overhauser) DNP at magnetic fields of interest in analytical applications. Like Overhauser DNP, JDNP also requires saturating the electronic polarization using high-frequency microwaves known to have poor penetration and associated heating effects in most liquids. The present microwave-free JDNP (MF-JDNP) proposal seeks to enhance solution NMR's sensitivity by shuttling the sample between higher and lower magnetic fields, with one of these fields providing an electron Larmor frequency that matches the interelectron exchange coupling J_{ex}. If spins cross this so-called JDNP condition sufficiently fast, we predict that a sizable nuclear polarization will be created without microwave irradiation. This MF-JDNP proposal requires radicals whose singlet-triplet self-relaxation rates are dominated by dipolar hyperfine relaxation, and shuttling times that can compete with these electron relaxation processes. This paper discusses the theory behind the MF-JDNP, as well as proposals for radicals and conditions that could enable this new approach to NMR sensitivity enhancement.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Reinhard M, Levien M, Bennati M, Orlando T. Large 31P-NMR enhancements in liquid state dynamic nuclear polarization through radical/target molecule non-covalent interaction. Phys Chem Chem Phys 2022; 25:822-828. [PMID: 36511338 PMCID: PMC9768845 DOI: 10.1039/d2cp04092a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic nuclear polarization (DNP) is a method to enhance the low sensitivity of nuclear magnetic resonance (NMR) via spin polarization transfer from electron spins to nuclear spins. In the liquid state, this process is mediated by fast modulations of the electron-nuclear hyperfine coupling and its efficiency depends strongly on the applied magnetic field. A peculiar case study is triphenylphosphine (PPh3) dissolved in benzene and doped with BDPA radical because it gives 31P-NMR signal enhancements of two orders of magnitude up to a magnetic field of 14.1 T. Here we show that the large 31P enhancements of BDPA/PPh3 in benzene at 1.2 T (i) decrease when the moieties are dissolved in other organic solvents, (ii) are strongly reduced when using a nitroxide radical, and (iii) vanish with pentavalent 31P triphenylphosphine oxide. Those experimental observations are rationalized with numerical calculations based on density functional theory that show the tendency of BDPA and PPh3 to form a weak complex via non-covalent interaction that leads to large hyperfine couplings to 31P (ΔAiso ≥ 13 MHz). This mechanism is hampered in other investigated systems. The case study of 31P-DNP in PPh3 is an important example that extends the current understanding of DNP in the liquids state: non-covalent interactions between radical and target can be particularly effective to obtain large NMR signal enhancements.
Collapse
Affiliation(s)
- Maik Reinhard
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Marcel Levien
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Marina Bennati
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Tomas Orlando
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany
| |
Collapse
|
5
|
Rao Y, Venkatesh A, Moutzouri P, Emsley L. 1H Hyperpolarization of Solutions by Overhauser Dynamic Nuclear Polarization with 13C- 1H Polarization Transfer. J Phys Chem Lett 2022; 13:7749-7755. [PMID: 35969266 PMCID: PMC9421900 DOI: 10.1021/acs.jpclett.2c01956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Dynamic nuclear polarization (DNP) is a method that can significantly increase the sensitivity of nuclear magnetic resonance. The only effective DNP mechanism for in situ hyperpolarization in solution is Overhauser DNP, which is inefficient for 1H at high magnetic fields. Here we demonstrate the possibility of generating significant 1H hyperpolarization in solution at room temperature. To counter the poor direct 1H Overhauser DNP, we implement steady-state 13C Overhauser DNP in solutions and then transfer the 13C hyperpolarization to 1H via a reverse insensitive nuclei enhanced by polarization transfer scheme. We demonstrate this approach using a 400 MHz gyrotron-equipped 3.2 mm magic angle spinning DNP system to obtain 1H DNP enhancement factors of 48, 8, and 6 for chloroform, tetrachloroethane, and phenylacetylene, respectively, at room temperature.
Collapse
|
6
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
7
|
Concilio MG, Kuprov I, Frydman L. J-Driven dynamic nuclear polarization for sensitizing high field solution state NMR. Phys Chem Chem Phys 2022; 24:2118-2125. [PMID: 35024715 DOI: 10.1039/d1cp04186j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B0, unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings Jex of the order of the electron Larmor frequency ωE. Numerical and analytical calculations show that in such Jex ≈ ±ωE cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton, UK
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. .,National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Saenz F, Tamski M, Milani J, Roussel C, Frauenrath H, Ansermet JP. Blatter-type radicals as polarizing agents for electrochemical overhauser dynamic nuclear polarization. Chem Commun (Camb) 2021; 58:689-692. [PMID: 34919627 DOI: 10.1039/d1cc05350g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overhauser dynamic nuclear polarization (O-DNP) refers to a microwave-assisted process where an unpaired electron's (e.g. a radical) spin polarization is transferred to surrounding nuclei in solution, thus increasing the nuclear magnetic resonance (NMR) signal intensity of a given substance by several orders of magnitude. The presence of the unpaired electrons, which induces relaxation of the resulting hyperpolarized state when the radiation is halted, can be avoided by electrochemically removing the radicals on demand. We report the use of Blatter-type (benzo[e][1,2,4]triazinyl) radicals as polarizing agents, potentially opening the way to highly tunable radicals for electrochemical DNP.
Collapse
Affiliation(s)
- Felipe Saenz
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Mika Tamski
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Jonas Milani
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Christophe Roussel
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland. .,Section of Chemistry and Chemical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Holger Frauenrath
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Jean-Philippe Ansermet
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|