1
|
Zeng XM, Liu J, Su JB, Wang FH, Li YB, Zhan CJ, Liu M, Wu RS, Hu JP, Zheng F. First-principles calculations to investigate the impact of fluorine doping on electrochemical properties of Li-rich Li 2MnO 3 layered cathode materials. RSC Adv 2024; 14:26516-26523. [PMID: 39175670 PMCID: PMC11339785 DOI: 10.1039/d4ra04925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Li-rich layered oxides are promising candidates for high-capacity Li-ion battery cathode materials. In this study, we employ first-principles calculations to investigate the effect of F doping on Li-rich Li2MnO3 layered cathode materials. Our findings reveal that both Li2MnO3 and Li2MnO2.75F0.25 exhibit significant volume changes (greater than 10%) during deep delithiation, which could hinder the cycling of more Li ions from these two materials. For Li2MnO3, it is observed that oxygen ions lose electrons to compensate for charge during the delithiation process, leading to a relatively high voltage plateau. After F doping, oxidation occurs in both the cationic (Mn) and anionic (O) components, resulting in a lower voltage plateau at the beginning of the charge, which can be attributed to the oxidation of Mn3+ to Mn4+. Additionally, F doping can somewhat suppress the release of oxygen in Li2MnO3, improving the stability of anionic oxidation. However, the increase of the activation barriers for Li diffusion can be observed after F doping, due to stronger electrostatic interactions between F- and Li+, which adversely affects the cycling kinetics of Li2MnO2.75F0.25. This study enhances our understanding of the impact of F doping in Li2MnO3 based on theoretical calculations.
Collapse
Affiliation(s)
- Xiang-Ming Zeng
- School of New Energy Science and Engineering, Xinyu University Xinyu 338004 China
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Xinyu University Xinyu 338004 China
- Jiangxi Lithium Battery New Material Industry Technology Institute, Jiangxi Yingxing Lithium Battery New Materials Industrial Technology Institute Co., Ltd Xinyu 338004 China
| | - Jing Liu
- Library, Xinyu University Xinyu 338004 China
| | - Jiang-Bin Su
- School of New Energy Science and Engineering, Xinyu University Xinyu 338004 China
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Xinyu University Xinyu 338004 China
| | - Fa-Hui Wang
- School of New Energy Science and Engineering, Xinyu University Xinyu 338004 China
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Xinyu University Xinyu 338004 China
| | - Yan-Bing Li
- School of New Energy Science and Engineering, Xinyu University Xinyu 338004 China
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Xinyu University Xinyu 338004 China
| | - Chang-Jun Zhan
- School of New Energy Science and Engineering, Xinyu University Xinyu 338004 China
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Xinyu University Xinyu 338004 China
| | - Ming Liu
- School of New Energy Science and Engineering, Xinyu University Xinyu 338004 China
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Xinyu University Xinyu 338004 China
| | - Run-Sheng Wu
- School of New Energy Science and Engineering, Xinyu University Xinyu 338004 China
- Jiangxi Provincial Key Laboratory of Power Batteries & Energy Storage Materials, Xinyu University Xinyu 338004 China
- Jiangxi Lithium Battery New Material Industry Technology Institute, Jiangxi Yingxing Lithium Battery New Materials Industrial Technology Institute Co., Ltd Xinyu 338004 China
| | - Jun-Ping Hu
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang Institute of Technology Nanchang 330099 China
| | - Feng Zheng
- School of Science, Jimei University Xiamen 361021 China
| |
Collapse
|
2
|
Pulido R, Naveas N, Martin-Palma RJ, Agulló-Rueda F, Ferró VR, Hernández-Montelongo J, Recio-Sánchez G, Brito I, Manso-Silván M. Phonon Structure, Infra-Red and Raman Spectra of Li 2MnO 3 by First-Principles Calculations. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6237. [PMID: 36143549 PMCID: PMC9502259 DOI: 10.3390/ma15186237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The layer-structured monoclinic Li2MnO3 is a key material, mainly due to its role in Li-ion batteries and as a precursor for adsorbent used in lithium recovery from aqueous solutions. In the present work, we used first-principles calculations based on density functional theory (DFT) to study the crystal structure, optical phonon frequencies, infra-red (IR), and Raman active modes and compared the results with experimental data. First, Li2MnO3 powder was synthesized by the hydrothermal method and successively characterized by XRD, TEM, FTIR, and Raman spectroscopy. Secondly, by using Local Density Approximation (LDA), we carried out a DFT study of the crystal structure and electronic properties of Li2MnO3. Finally, we calculated the vibrational properties using Density Functional Perturbation Theory (DFPT). Our results show that simulated IR and Raman spectra agree well with the observed phonon structure. Additionally, the IR and Raman theoretical spectra show similar features compared to the experimental ones. This research is useful in investigations involving the physicochemical characterization of Li2MnO3 material.
Collapse
Affiliation(s)
- Ruth Pulido
- Departamento de Física Aplicada and Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1240000, Chile
| | - Nelson Naveas
- Departamento de Física Aplicada and Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1240000, Chile
| | - Raúl J. Martin-Palma
- Departamento de Física Aplicada and Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Victor R. Ferró
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad de San Sebastián, Concepción 4080871, Chile
| | - Ivan Brito
- Departamento de Química, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1240000, Chile
| | - Miguel Manso-Silván
- Departamento de Física Aplicada and Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|