1
|
Martín Santa Daría A, Avila G, Mátyus E. Methane dimer rovibrational states and Raman transition moments. Phys Chem Chem Phys 2024; 26:10254-10264. [PMID: 38497527 DOI: 10.1039/d3cp06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Benchmark-quality rovibrational data are reported for the methane dimer from variational nuclear motion computations using an ab initio intermolecular potential energy surface reported by [M. P. Metz et al., Phys. Chem. Chem. Phys., 2019, 21, 13504-13525]. A simple polarizability model is used to compute Raman transition moments that may be relevant for future direct observation of the intermolecular dynamics. Non-negligible ΔK ≠ 0 transition moments arise in this symmetric top system due to strong rovibrational couplings.
Collapse
Affiliation(s)
- Alberto Martín Santa Daría
- Departamento de Química Física, University of Salamanca, 37008 Salamanca, Spain
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Gustavo Avila
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| |
Collapse
|
2
|
Mátyus E, Martín Santa Daría A, Avila G. Exact quantum dynamics developments for floppy molecular systems and complexes. Chem Commun (Camb) 2023; 59:366-381. [PMID: 36519578 DOI: 10.1039/d2cc05123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular rotation, vibration, internal rotation, isomerization, tunneling, intermolecular dynamics of weakly and strongly interacting systems, intra-to-inter-molecular energy transfer, hindered rotation and hindered translation over surfaces are important types of molecular motions. Their fundamentally correct and detailed description can be obtained by solving the nuclear Schrödinger equation on a potential energy surface. Many of the chemically interesting processes involve quantum nuclear motions which are 'delocalized' over multiple potential energy wells. These 'large-amplitude' motions in addition to the high dimensionality of the vibrational problem represent challenges to the current (ro)vibrational methodology. A review of the quantum nuclear motion methodology is provided, current bottlenecks of solving the nuclear Schrödinger equation are identified, and solution strategies are reviewed. Technical details, computational results, and analysis of these results in terms of limiting models and spectroscopically relevant concepts are highlighted for selected numerical examples.
Collapse
Affiliation(s)
- Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Alberto Martín Santa Daría
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Gustavo Avila
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| |
Collapse
|
3
|
Shanavas Rasheeda D, Martín Santa Daría A, Schröder B, Mátyus E, Behler J. High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark. Phys Chem Chem Phys 2022; 24:29381-29392. [PMID: 36459127 DOI: 10.1039/d2cp03893e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In recent years, machine learning potentials (MLP) for atomistic simulations have attracted a lot of attention in chemistry and materials science. Many new approaches have been developed with the primary aim to transfer the accuracy of electronic structure calculations to large condensed systems containing thousands of atoms. In spite of these advances, the reliability of modern MLPs in reproducing the subtle details of the multi-dimensional potential-energy surface is still difficult to assess for such systems. On the other hand, moderately sized systems enabling the application of tools for thorough and systematic quality-control are nowadays rarely investigated. In this work we use benchmark-quality harmonic and anharmonic vibrational frequencies as a sensitive probe for the validation of high-dimensional neural network potentials. For the case of the formic acid dimer, a frequently studied model system for which stringent spectroscopic data became recently available, we show that high-quality frequencies can be obtained from state-of-the-art calculations in excellent agreement with coupled cluster theory and experimental data.
Collapse
Affiliation(s)
- Dilshana Shanavas Rasheeda
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstraβe 6, 37077 Göttingen, Germany.
| | - Alberto Martín Santa Daría
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Benjamin Schröder
- Universität Göttingen, Institut für Physikalische Chemie, Tammannstraβe 6, 37077 Göttingen, Germany
| | - Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Jörg Behler
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstraβe 6, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Papp D, Tajti V, Avila G, Mátyus E, Czakó G. CH 4·F − revisited: full-dimensional ab initio potential energy surface and variational vibrational states. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged, Hungary
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged, Hungary
| | - Gustavo Avila
- ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Nejad A, Meyer KAE, Kollipost F, Xue Z, Suhm MA. Slow monomer vibrations in formic acid dimer: Stepping up the ladder with FTIR and Raman jet spectroscopy. J Chem Phys 2021; 155:224301. [PMID: 34911308 DOI: 10.1063/5.0075272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In an effort to extend the cold gas phase spectroscopic database of the cyclic formic acid dimer (FAD), we present and analyze the jet-cooled vibrational infrared and Raman spectrum of (HCOOH)2 in the monomer fingerprint region between 600 and 1500 cm-1. The present study bridges the gap between the intermolecular dimerization-induced and the carbonyl stretching fundamentals that have already been reexamined using jet-cooled or high-resolution spectroscopy. This completes the characterization of the jet-cooled vibrational (HCOOH)2 spectrum below the complex OH (CH) stretching fundamentals, and we report resonance-induced FAD combination/overtone transitions that will serve as a valuable reference for a theoretical modeling of its vibrational dynamics. As a by-product, several new formic acid trimer fundamentals are identified in the jet spectra and assigned with the help of second-order vibrational perturbation theory (VPT2). The polar formic acid dimer still eludes detection in a supersonic jet, but we are able to estimate an experimental upper-bound of the polar dimer-to-trimer-to-cyclic dimer intensity ratio to about 1:10:100 under typical expansion conditions. Using VPT2 with resonance treatment (VPT2+K), we reinvestigate the notorious ν22 resonance triad. Generally, we find that VPT2, which is, of course, inadequate for modeling the resonance-rich OH stretching spectrum of FAD, is performing very satisfactorily in predicting fundamental and two-quantum state term values for the slower modes below 1500 cm-1. As these modes are the building blocks for the ultrafast energy dissipation in the OH stretching region, the present work opens the door for its quantitative understanding.
Collapse
Affiliation(s)
- Arman Nejad
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Katharina A E Meyer
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Franz Kollipost
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Zhifeng Xue
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Martin A Suhm
- Institute of Physical Chemistry, Georg August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Käser S, Meuwly M. Transfer learned potential energy surfaces: accurate anharmonic vibrational dynamics and dissociation energies for the formic acid monomer and dimer. Phys Chem Chem Phys 2021; 24:5269-5281. [PMID: 34792523 PMCID: PMC8890265 DOI: 10.1039/d1cp04393e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational dynamics of the formic acid monomer (FAM) and dimer (FAD) is investigated from machine-learned potential energy surfaces at the MP2 (PESMP2) and transfer-learned (PESTL) to the CCSD(T) levels of theory. The normal mode (MAEs of 17.6 and 25.1 cm−1) and second order vibrational perturbation theory (VPT2, MAEs of 6.7 and 17.1 cm−1) frequencies from PESTL for all modes below 2000 cm−1 for FAM and FAD agree favourably with experiment. For the OH stretch mode the experimental frequencies are overestimated by more than 150 cm−1 for both FAM and FAD from normal mode calculations. Conversely, VPT2 calculations on PESTL for FAM reproduce the experimental OH frequency to within 22 cm−1. For FAD the VPT2 calculations find the high-frequency OH stretch at 3011 cm−1, compared with an experimentally reported, broad (∼100 cm−1) absorption band with center frequency estimated at ∼3050 cm−1. In agreement with earlier reports, MD simulations at higher temperature shift the position of the OH-stretch in FAM to the red, consistent with improved sampling of the anharmonic regions of the PES. However, for FAD the OH-stretch shifts to the blue and for temperatures higher than 1000 K the dimer partly or fully dissociates using PESTL. Including zero-point energy corrections from diffusion Monte Carlo simulations for FAM and FAD and corrections due to basis set superposition and completeness errors yields a dissociation energy of D0 = −14.23 ± 0.08 kcal mol−1 compared with an experimentally determined value of −14.22 ± 0.12 kcal mol−1. Neural network based PESs are constructed for formic acid monomer and dimer at the MP2 and transfer learned to the CCSD(T) level of theory. The PESs are used to study the vibrational dynamics and dissociation energy of the molecules.![]()
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
7
|
Martín Santa Daría A, Avila G, Mátyus E. Performance of a black-box-type rovibrational method in comparison with a tailor-made approach: Case study for the methane-water dimer. J Chem Phys 2021; 154:224302. [PMID: 34241197 DOI: 10.1063/5.0054512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present work intends to join and respond to the excellent and thoroughly documented rovibrational study of X. G. Wang and T. Carrington, Jr. [J. Chem. Phys. 154, 124112 (2021)] that used an approach tailored for floppy dimers with an analytic dimer Hamiltonian and a non-product basis set including Wigner D functions. It is shown in the present work that the GENIUSH black-box-type rovibrational method can approach the performance of the tailor-made computation for the example of the floppy methane-water dimer. Rovibrational transition energies and intensities are obtained in the black-box-type computation with a twice as large basis set and in excellent numerical agreement in comparison with the more efficient tailor-made approach.
Collapse
Affiliation(s)
| | - Gustavo Avila
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Edit Mátyus
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|