1
|
Dellai A, Krismer I, Prampolini G, Champagne B, Ramos TN, Castet F. Solvent effects on the second harmonic responses of donor-acceptor Stenhouse adducts: from implicit to hybrid solvation models. Phys Chem Chem Phys 2025; 27:672-686. [PMID: 39665533 DOI: 10.1039/d4cp03674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The effect of conformational dynamics and solvent interactions on the second-order nonlinear optical (NLO) responses of the open and closed forms of a donor-acceptor Stenhouse adduct (DASA) are investigated by a mixed quantum/classical computational approach, which couples molecular dynamics (MD) simulations and time-dependent density functional theory (TD-DFT) calculations. The latter are further combined with various solvation schemes, including polarizable continuum models, hybrid QM/MM approaches using either non polarizable or polarizable electrostatic embedding, and QM/QM' schemes with explicit treatment of a few molecules of the first solvation shell. The performances of the different solvation models are discussed in the context of comparisons with experimental data obtained from hyper-Rayleigh scattering measurements.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Isabella Krismer
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | | | - Benoît Champagne
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Tárcius N Ramos
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
2
|
Sun F, Gao A, Yan B, Zhang J, Wang X, Zhang H, Dai D, Zheng Y, Deng X, Wei C, Wang D. Self-adaptive photochromism. SCIENCE ADVANCES 2024; 10:eads2217. [PMID: 39504369 PMCID: PMC11540023 DOI: 10.1126/sciadv.ads2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Organisms with active camouflage ability exhibit changeable appearance with the switching of environments. However, manmade active camouflage systems heavily rely on integrating electronic devices, which encounters problems including a complex structure, poor usability, and high cost . In the current work, we report active camouflage as an intrinsic function of materials by proposing self-adaptive photochromism (SAP). The SAP materials were fabricated using donor-acceptor Stenhouse adducts (DASAs) as the negative photochromic phases and organic dyes as the fixed phases (nonphotochromic). Incident light with a specific wavelength induces linear-to-cyclic isomerization of DASAs, which generates an absorption gap at the wavelength and accordingly switches the color. The SAP materials are in the primary black state under dark and spontaneously switch to another color upon triggering by transmitted and reflected light in the background. SAP films and coatings were fabricated by incorporating polycaprolactone and are applicable to a wide variety of surfaces.
Collapse
Affiliation(s)
- Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ang Gao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Boyun Yan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiangru Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hanjun Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chen Wei
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Dellai A, Naim C, Cerezo J, Prampolini G, Castet F. Dynamic effects on the nonlinear optical properties of donor acceptor stenhouse adducts: insights from combined MD + QM simulations. Phys Chem Chem Phys 2024; 26:13639-13654. [PMID: 38511505 DOI: 10.1039/d4cp00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The second-order nonlinear optical (NLO) responses of a donor-acceptor stenhouse adduct (DASA) are investigated by using a computational approach combining molecular dynamics simulations and density functional theory (DFT) calculations. Specific force fields for the open and closed photoswitching forms are first parameterized and validated according to the Joyce protocol, in order to finely reproduce the geometrical features and potential energy surfaces of both isomers in chloroform solution. Then, DFT calculations are performed on structural snapshots extracted at regular time steps of the MD trajectories to address the influence of the thermalized conformational dynamics on the NLO responses related to hyper-Rayleigh scattering (HRS) experiments. We show that accounting for the structural dynamics largely enhances the HRS hyperpolarizability (βHRS) compared to DFT calculations considering solely equilibrium geometries, and greatly improves the agreement with experimental measurements. Furthermore, we show that the NLO responses of the NLO-active open form are correlated with the bond order alternation along the triene bridge connecting the donor and acceptor moieties, which is rationalized using simple essential state models.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
4
|
Dubuis S, Dellai A, Courdurié C, Owona J, Kalafatis A, Vellutini L, Genin E, Rodriguez V, Castet F. Nonlinear Optical Responses of Photoswitchable Donor-Acceptor Stenhouse Adducts. J Am Chem Soc 2023; 145:10861-10871. [PMID: 37141624 DOI: 10.1021/jacs.3c02778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This work combines hyper-Rayleigh scattering (HRS) experiments performed in the NIR range (1.30 and 1.60 μm) and quantum chemical calculations to provide a comprehensive description of the second harmonic generation (SHG) responses of donor-acceptor Stenhouse adducts (DASAs). Representative derivatives of the three generations of DASAs, which differ by the nature of their electron-donating and withdrawing moieties and also include clickable species, have been synthesized and their photoswitching behavior fully characterized. The HRS measurements allow us to establish relationships between the magnitude of the SHG response of open forms and the nature of the donor and acceptor groups. The largest SHG responses are obtained for derivatives incorporating either a barbituric acid or an indanedione acceptor unit, while N-methylaniline appears as the most efficient donor group. The calculations support well the experimental data and show that high hyperpolarizabilities are associated to low excitation energies and large extent of the photoinduced intramolecular charge transfer, which enhances the dipole moment variation between the ground and first dipole-allowed electronic excited state. In addition, a complete investigation of the photoswitching kinetics of DASAs in chloroform solution shows important differences, highlighting in particular the role of the donor group on the photoswitching efficiency.
Collapse
Affiliation(s)
- Simon Dubuis
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Chloé Courdurié
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Josianne Owona
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Apostolos Kalafatis
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Emilie Genin
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Vincent Rodriguez
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| |
Collapse
|
5
|
Li Y, Zhu C, Gu F, Liu F. Revisiting photocyclization of the donor-acceptor stenhouse adduct: missing pieces in the mechanistic jigsaw discovered. Phys Chem Chem Phys 2023; 25:7417-7422. [PMID: 36847409 DOI: 10.1039/d2cp05143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASA) have recently emerged as a class of visible-light-induced photochromic molecular switches, but their photocyclization mechanism remains puzzling and incomplete. In this work, we carried out MS-CASPT2//SA-CASSCF calculations to reveal the complete mechanism of the dominant channels and possible side reactions. We found that a new thermal-then-photo isomerization channel, i.e., EEZ → EZZ → EZE, other than the commonly accepted EEZ → EEE → EZE channel, is dominant in the initial step. Besides, our calculations rationalized why the expected byproducts ZEZ and ZEE are unobserved and proposed a competitive stepwise channel for the final ring-closure step. The findings here redraw the mechanistic picture of the DASA reaction by better accounting for experimental observations, and more importantly, provide critical physical insight in understanding the interplay between thermal- and photo-induced processes widely present in photochemical synthesis and reactions.
Collapse
Affiliation(s)
- Yazhen Li
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China.
| | - Fenglong Gu
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China.
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
6
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
7
|
Peterson JA, Stricker F, Read de Alaniz J. Improving the kinetics and dark equilibrium of donor-acceptor Stenhouse adduct by triene backbone design. Chem Commun (Camb) 2022; 58:2303-2306. [PMID: 35075464 DOI: 10.1039/d1cc06235b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DFT calculations were used to find an optimal substitution site on the triene backbone of a donor-acceptor Stenhouse adduct photoswitch to tune the equillibrium and switching kinetics of DASA without modifying the donor and acceptor groups. Using this approach we demonstrate a new means to tuning DASA based photoswitches by increasing the energy of the closed form relative to the open form. To highlight the potential of this approach a new DASA derivative bearing a methyl substituent on the 5-position of the triene was synthesized and the effect of this substitution was studied using 1H NMR spectroscopy, time-dependent UV-Vis and solvatochromic analysis. The new DASA derivative shows a higher dark equillibrium, favoring the open form, and drastically faster thermal recovery than the unsubstituted derivative with the same donor and acceptor.
Collapse
Affiliation(s)
- Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Alves J, Wiedbrauk S, Barner‐Kowollik C, Blinco JP. The Missing Piece: Concentration Dependence of Donor‐Acceptor Stenhouse Adduct (DASA) Reactivity. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jessica Alves
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Sandra Wiedbrauk
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - James P. Blinco
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|