1
|
Sui X, Xu B, Kostko O, Yu XY. Investigation of pyruvic acid photolysis at the air-liquid interface as a source of aqueous secondary organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172729. [PMID: 38670353 DOI: 10.1016/j.scitotenv.2024.172729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pyruvic acid (PA) is a ubiquitous 2-oxocarboxylic acid in the atmosphere. Its photochemical process at the air-liquid (a-l) interface has been suggested as an important source of aqueous secondary organic aerosols. We investigated the photochemical reaction pathways of PA at the a-l interface using synchrotron-based vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI) microreactor. Results from mass spectral analysis and the determination of appearance energies (AEs) indicate that photolysis of PA can generate radicals, then they recombine with carboxylic acids and simple molecular oligomers. Furthermore, the preliminary products could form larger oligomers via radical reaction or esterification in the presence of hydroxyl and carboxyl functional groups. Mass spectral comparison shows that most photochemical reactions would complete within 4 h. The expanded photochemistry-driven reaction flowchart of PA is proposed based on the newly discovered products. Our results reveal that the interfacial PA photochemical reactions have different mechanisms from the bulk liquid due to the interfacial properties, such as molecular density, composition, and ion concentration. Our findings show that in situ mass spectral analysis with bright photon ionization is useful to elucidate the contribution of a-l interfacial reactions leading to aqSOA formation.
Collapse
Affiliation(s)
- Xiao Sui
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830-6136, United States.
| |
Collapse
|
2
|
Hockey EK, McLane N, Martí C, Duckett L, Osborn DL, Dodson LG. Direct Observation of Gas-Phase Hydroxymethylene: Photoionization and Kinetics Resulting from Methanol Photodissociation. J Am Chem Soc 2024; 146:14416-14421. [PMID: 38744681 DOI: 10.1021/jacs.4c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Carbene species play an integral role in high-energy chemistry, transition-metal-carbene chemistry, catalysis, photolytic formation of carbohydrates, and possibly even the formation of interstellar sugars. In 1921, "reactive formaldehyde"─now known as hydroxymethylene (HCOH)─was first implicated as an intermediate in photocatalytic processes. However, due to its transient nature, direct observation of HCOH has predominantly been attained using cryogenic isolation methods. As a result, HCOH gas-phase reactivity measurements have been limited. We directly observed HCOH using photoionization spectroscopy following UV photodissociation of methanol. Our measurements show it reacts slowly with O2 at room temperature. This work provides evidence for the formation mechanism of HCOH from CH3OH and its subsequent reactivity under gas-phase reaction conditions.
Collapse
Affiliation(s)
- Emily K Hockey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Nathan McLane
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Carles Martí
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - LeAnh Duckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Leah G Dodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Cao W, Hu Z, Peng X, Sun H, Sun Z, Wang XB. Annihilating Actinic Photochemistry of the Pyruvate Anion by One and Two Water Molecules. J Am Chem Soc 2022; 144:19317-19325. [PMID: 36166618 DOI: 10.1021/jacs.2c06319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photochemical behaviors of pyruvic acid in multiple phases have been extensively studied, while those of its conjugate base, the pyruvate anion (CH3COCOO-, PA-) are less understood and remain contradictory in gaseous versus aqueous phases. Here in this article, we report a joint experimental and theoretical study combining cryogenic, wavelength-resolved negative ion photoelectron spectroscopy (NIPES) and high-level quantum chemical computations to investigate PA- actinic photochemistry and its dependence on microsolvation in the gas phase. PA-·nH2O (n = 0-5) clusters were generated and characterized, with their low-lying isomers identified. NIPES conducted at multiple wavelengths across the PA- actinic regime revealed the PA- photochemistry extremely sensitive to its hydration extent. While bare PA- anions exhibit active photoinduced dissociations that generate the acetyl (CH3CO-), methide (CH3-) anions, their corresponding radicals, and slow electrons, one single attached water molecule results in significant suppression with a subsequent second water being able to completely block all dissociation pathways, effectively annihilating all PA- photochemical reactivities. The underlying dissociation mechanisms of PA-·nH2O (n = 0-2) clusters are proposed involving nπ* excitation, dehydration, decarboxylation, and further CO loss. Since the photoexcited dihydrate does not have sufficient energy to overcome the full dehydration barrier before PA- could fragmentate, the PA- dissociation pathway is completely blocked, with the energy most likely released via loss of one water and internal electronic and vibrational relaxations. The insight unraveled in this work provides a much-needed critical link to connect the seemingly conflicting PA- actinic chemistry between the gas and condensed phases.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaogai Peng
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
4
|
Hutton L, Curchod BFE. Photodynamics of Gas‐Phase Pyruvic Acid Following Light Absorption in the Actinic Region. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lewis Hutton
- Centre for Computational Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Basile F. E. Curchod
- Centre for Computational Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| |
Collapse
|
5
|
Miller TM, Wiens JP, Viggiano AA, Ard SG, Shuman NS. Thermal Electron Attachment to Pyruvic Acid, Thermal Detachment from the Parent Anion, and the Electron Affinity of Pyruvic Acid. J Phys Chem A 2022; 126:5545-5551. [PMID: 35951543 DOI: 10.1021/acs.jpca.2c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of electron attachment to pyruvic acid (CH3COCOOH) and thermal detachment from the resulting parent anion were measured from 300-515 K using a flowing afterglow─Langmuir probe apparatus. An adiabatic electron affinity (EA) for pyruvic acid was derived, 0.84 ± 0.02 eV. Electron attachment rate constants to pyruvic acid of 2.1 × 10-8 and 1.2 × 10-8 were measured at 300 and 400 K, respectively. Rate constants at higher temperatures are less well-defined due to possible contributions from attachment to zymonic open ketone, an endemic impurity in pyruvic acid. Similarly, unimolecular detachment rates are complicated by secondary proton transfer reaction of the pyruvic acid anion with pyruvic acid to yield an 87 Da anion. The possible contributions from these chemistries are considered, and in all cases the equilibrium constant between attachment and detachment remains well-defined, allowing for determination of the EA.
Collapse
Affiliation(s)
- Thomas M Miller
- Boston College Institute for Scientific Research, Boston, Massachusetts 02549, United States
| | - Justin P Wiens
- Boston College Institute for Scientific Research, Boston, Massachusetts 02549, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
6
|
Photochemistry of the pyruvate anion produces CO 2, CO, CH 3-, CH 3, and a low energy electron. Nat Commun 2022; 13:937. [PMID: 35177613 PMCID: PMC8854594 DOI: 10.1038/s41467-022-28582-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
The photochemistry of pyruvic acid has attracted much scientific interest because it is believed to play critical roles in atmospheric chemistry. However, under most atmospherically relevant conditions, pyruvic acid deprotonates to form its conjugate base, the photochemistry of which is essentially unknown. Here, we present a detailed study of the photochemistry of the isolated pyruvate anion and uncover that it is extremely rich. Using photoelectron imaging and computational chemistry, we show that photoexcitation by UVA light leads to the formation of CO2, CO, and CH3−. The observation of the unusual methide anion formation and its subsequent decomposition into methyl radical and a free electron may hold important consequences for atmospheric chemistry. From a mechanistic perspective, the initial decarboxylation of pyruvate necessarily differs from that in pyruvic acid, due to the missing proton in the anion. Pyruvic acid and its conjugate base, the pyruvate anion, are largely present in the atmosphere. Here the authors, using photoelectron imaging and quantum chemistry calculations, investigate the photochemistry of isolated pyruvate anions initiated by UVA radiation and report the formation of CO2, CO, and CH3− further decomposing into CH3 and a free electron.
Collapse
|
7
|
Barquilla MDP, Mayes ML. Role of hydrogen bonding in bulk aqueous phase decomposition, complexation, and covalent hydration of pyruvic acid. Phys Chem Chem Phys 2022; 24:25151-25170. [DOI: 10.1039/d2cp03579k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The behavior of hydrogen bonding changes between the gas and aqueous phase, altering the mechanisms of various pyruvic acid processes and consequently affecting the aerosol formation in different environments.
Collapse
Affiliation(s)
- Michael Dave P. Barquilla
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Maricris L. Mayes
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| |
Collapse
|
8
|
Jarraya M, Bellili A, Barreau L, Cubaynes D, Garcia GA, Poisson L, Hochlaf M. Probing the dynamics of the photo-induced decarboxylation of neutral and ionic pyruvic acid. Faraday Discuss 2022; 238:266-294. [DOI: 10.1039/d2fd00023g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the electronically excited pyruvic acid (PA) and of its unimolecular decomposition upon single photon ionization are investigated by means of a table top fs laser and VUV...
Collapse
|
9
|
Aqueous Photochemistry of 2-Oxocarboxylic Acids: Evidence, Mechanisms, and Atmospheric Impact. Molecules 2021; 26:molecules26175278. [PMID: 34500711 PMCID: PMC8433822 DOI: 10.3390/molecules26175278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022] Open
Abstract
Atmospheric organic aerosols play a major role in climate, demanding a better understanding of their formation mechanisms by contributing multiphase chemical reactions with the participation of water. The sunlight driven aqueous photochemistry of small 2-oxocarboxylic acids is a potential major source of organic aerosol, which prompted the investigations into the mechanisms of glyoxylic acid and pyruvic acid photochemistry reviewed here. While 2-oxocarboxylic acids can be contained or directly created in the particles, the majorities of these abundant and available molecules are in the gas phase and must first undergo the surface uptake process to react in, and on the surface, of aqueous particles. Thus, the work also reviews the acid-base reaction that occurs when gaseous pyruvic acid meets the interface of aqueous microdroplets, which is contrasted with the same process for acetic acid. This work classifies relevant information needed to understand the photochemistry of aqueous pyruvic acid and glyoxylic acid and motivates future studies based on reports that use novel strategies and methodologies to advance this field.
Collapse
|
10
|
Savee JD, Sztáray B, Welz O, Taatjes CA, Osborn DL. Valence Photoionization and Autoionization of the Formyl Radical. J Phys Chem A 2021; 125:3874-3884. [PMID: 33929204 DOI: 10.1021/acs.jpca.1c01775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used 308 nm photolysis of acetaldehyde to measure a photoionization spectrum of the formyl (HCO) radical between 8 and 11.5 eV using an 11 meV FWHM photoionization energy resolution. We have confirmed that the formyl radical is the carrier of the spectrum by generating an identical spectrum of the HCO product in the Cl + H2CO reaction. The spectrum of HCO and its deuterated isotopologue (DCO) have several resolved autoionizing resonances above the Franck-Condon envelope, which we assign to autoionization after initial excitation into neutral 3sσ and 3p Rydberg states converging to the first triplet excited state of HCO+(ã 3A'). The quantum defects for these states are δ3sσ = 1.06 ± 0.02 and δ3p = 0.821 ± 0.019. We report absolute photoionization cross-section measurements of σHCOPI(9.907 eV) = 4.5 ± 0.9 Mb, σHCOPI(10.007 eV) = 4.8 ± 1.0 Mb, σHCOPI(10.107 eV) = 6.0 ± 1.2 Mb, σHCOPI(10.107 eV) = 5.7 ± 1.2 Mb, and σHCOPI(10.304 eV) = 10.6 ± 2.2 Mb relative to the photoionization cross section of the methyl radical. The absolute cross-section measurements are a factor of ∼1.5 larger than those determined in past studies, although the presence of strong autoionizing features supports a dependence on photoionization energy resolution. We propose that the semiempirical model of Xu and Pratt for estimation of free radical photoionization cross sections is more accurate when applied with a reference species containing the same atoms as the free radical rather than isoelectronic species with different atoms.
Collapse
Affiliation(s)
- John D Savee
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Bálint Sztáray
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Oliver Welz
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Craig A Taatjes
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551-0969, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551-0969, United States.,Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
11
|
Wu Z, Wang L, Lu B, Eckhardt AK, Schreiner PR, Zeng X. Spectroscopic characterization and photochemistry of the vinylsulfinyl radical. Phys Chem Chem Phys 2021; 23:16307-16315. [PMID: 34313279 DOI: 10.1039/d1cp02584h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simplest α,β-unsaturated sulfinyl radical CH2[double bond, length as m-dash]C(H)SO˙ has been generated in the gas phase by high-vacuum flash pyrolysis (HVFP) of sulfoxide CH2[double bond, length as m-dash]C(H)S(O)CF3 at ca. 800 °C. Two planar cis and trans conformers of CH2[double bond, length as m-dash]C(H)SO˙ were isolated in cryogenic matrixes (N2, Ne, and Ar) and characterized with IR and UV/Vis spectroscopy. In addition to the photo-induced cis ⇋ trans conformational interconversion, CH2[double bond, length as m-dash]C(H)SO˙ displays complex photochemistry. Upon irradiation with a purple light LED (400 nm), CH2[double bond, length as m-dash]C(H)SO˙ isomerizes to novel radicals CH3SCO˙, ˙CH2SC(O)H, and ˙CH2C(O)SH with concomitant dissociation to a caged molecular complex CH3S˙CO. Subsequent UV-laser (266 nm) irradiation causes fragmentation to ˙CH3/OCS and additional formation of an elusive carbonyl radical CH3C(O)S˙, which rearranges to ˙CH2C(O)SH upon further UV-light irradiation (365 nm). The vibrational data and bonding analysis of the two conformers of CH2[double bond, length as m-dash]C(H)SO˙ suggest that both are floppy radicals in which the unpaired electron conjugates with the vicinal π(C[double bond, length as m-dash]C) bond, leading to significant contribution of the canonical resonance form of ˙CH2-C(H)SO. The mechanism for the isomerization of CH2[double bond, length as m-dash]C(H)SO˙ is discussed based on the observed intermediates along with a computed potential energy profile at the CCSD(T)-F12a/aug-cc-pVTZ//B3LYP/6-311++G(3df,3pd) level of theory.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | | | | | | | | | | |
Collapse
|