1
|
Singh Y, Peralta JE, Jackson KA. The rise and fall of stretched bond errors: Extending the analysis of Perdew-Zunger self-interaction corrections of reaction barrier heights beyond the LSDA. J Chem Phys 2024; 160:124105. [PMID: 38526103 DOI: 10.1063/5.0179261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Incorporating self-interaction corrections (SIC) significantly improves chemical reaction barrier height predictions made using density functional theory methods. We present a detailed orbital-by-orbital analysis of these corrections for three semi-local density functional approximations (DFAs) situated on the three lowest rungs of Jacob's ladder of approximations. The analysis is based on Fermi-Löwdin Orbital Self-Interaction Correction (FLOSIC) calculations performed at several steps along the reaction pathway from the reactants (R) to the transition state (TS) to the products (P) for four representative reactions selected from the BH76 benchmark set. For all three functionals, the major contribution to self-interaction corrections of the barrier heights can be traced to stretched bond orbitals that develop near the TS configuration. The magnitude of the ratio of the self-exchange-correlation energy to the self-Hartree energy (XC/H) for a given orbital is introduced as an indicator of one-electron self-interaction error. XC/H = 1.0 implies that an orbital's self-exchange-correlation energy exactly cancels its self-Hartree energy and that the orbital, therefore, makes no contribution to the SIC in the FLOSIC scheme. For the practical DFAs studied here, XC/H spans a range of values. The largest values are obtained for stretched or strongly lobed orbitals. We show that significant differences in XC/H for corresponding orbitals in the R, TS, and P configurations can be used to identify the major contributors to the SIC of barrier heights and reaction energies. Based on such comparisons, we suggest that barrier height predictions made using the strongly constrained and appropriately normed meta-generalized gradient approximation may have attained the best accuracy possible for a semi-local functional using the Perdew-Zunger SIC approach.
Collapse
Affiliation(s)
- Yashpal Singh
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Juan E Peralta
- Department of Physics and Science of Advanced Materials PhD Program, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Koblar A Jackson
- Department of Physics and Science of Advanced Materials PhD Program, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| |
Collapse
|
2
|
Zope RR, Yamamoto Y, Baruah T. How well do one-electron self-interaction-correction methods perform for systems with fractional electrons? J Chem Phys 2024; 160:084102. [PMID: 38385511 DOI: 10.1063/5.0182773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
Recently developed locally scaled self-interaction correction (LSIC) is a one-electron SIC method that, when used with a ratio of kinetic energy densities (zσ) as iso-orbital indicator, performs remarkably well for both thermochemical properties as well as for barrier heights overcoming the paradoxical behavior of the well-known Perdew-Zunger self-interaction correction (PZSIC) method. In this work, we examine how well the LSIC method performs for the delocalization error. Our results show that both LSIC and PZSIC methods correctly describe the dissociation of H2+ and He2+ but LSIC is overall more accurate than the PZSIC method. Likewise, in the case of the vertical ionization energy of an ensemble of isolated He atoms, the LSIC and PZSIC methods do not exhibit delocalization errors. For the fractional charges, both LSIC and PZSIC significantly reduce the deviation from linearity in the energy vs number of electrons curve, with PZSIC performing superior for C, Ne, and Ar atoms while for Kr they perform similarly. The LSIC performs well at the endpoints (integer occupations) while substantially reducing the deviation. The dissociation of LiF shows both LSIC and PZSIC dissociate into neutral Li and F but only LSIC exhibits charge transfer from Li+ to F- at the expected distance from the experimental data and accurate ab initio data. Overall, both the PZSIC and LSIC methods reduce the delocalization errors substantially.
Collapse
Affiliation(s)
- Rajendra R Zope
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yoh Yamamoto
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
3
|
Villot C, Huang T, Lao KU. Accurate prediction of global-density-dependent range-separation parameters based on machine learning. J Chem Phys 2023; 159:044103. [PMID: 37486048 DOI: 10.1063/5.0157340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
In this work, we develop an accurate and efficient XGBoost machine learning model for predicting the global-density-dependent range-separation parameter, ωGDD, for long-range corrected functional (LRC)-ωPBE. This ωGDDML model has been built using a wide range of systems (11 466 complexes, ten different elements, and up to 139 heavy atoms) with fingerprints for the local atomic environment and histograms of distances for the long-range atomic correlation for mapping the quantum mechanical range-separation values. The promising performance on the testing set with 7046 complexes shows a mean absolute error of 0.001 117 a0-1 and only five systems (0.07%) with an absolute error larger than 0.01 a0-1, which indicates the good transferability of our ωGDDML model. In addition, the only required input to obtain ωGDDML is the Cartesian coordinates without electronic structure calculations, thereby enabling rapid predictions. LRC-ωPBE(ωGDDML) is used to predict polarizabilities for a series of oligomers, where polarizabilities are sensitive to the asymptotic density decay and are crucial in a variety of applications, including the calculations of dispersion corrections and refractive index, and surpasses the performance of all other popular density functionals except for the non-tuned LRC-ωPBE. Finally, LRC-ωPBE (ωGDDML) combined with (extended) symmetry-adapted perturbation theory is used in calculating noncovalent interactions to further show that the traditional ab initio system-specific tuning procedure can be bypassed. The present study not only provides an accurate and efficient way to determine the range-separation parameter for LRC-ωPBE but also shows the synergistic benefits of fusing the power of physically inspired density functional LRC-ωPBE and the data-driven ωGDDML model.
Collapse
Affiliation(s)
- Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Tong Huang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
4
|
Pederson MR, Johnson AI, Withanage KPK, Dolma S, Flores GB, Hooshmand Z, Khandal K, Lasode PO, Baruah T, Jackson KA. Downward quantum learning from element 118: Automated generation of Fermi-Löwdin orbitals for all atoms. J Chem Phys 2023; 158:084101. [PMID: 36859080 DOI: 10.1063/5.0135089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
A new algorithm based on a rigorous theorem and quantum data computationally mined from element 118 guarantees automated construction of initial Fermi-Löwdin-Orbital (FLO) starting points for all elements in the Periodic Table. It defines a means for constructing a small library of scalable FLOs for universal use in molecular and solid-state calculations. The method can be systematically improved for greater efficiency and for applications to excited states such as x-ray excitations and optically silent excitations. FLOs were introduced to recast the Perdew-Zunger self-interaction correction (PZSIC) into an explicit unitarily invariant form. The FLOs are generated from a set of N quasi-classical electron positions, referred to as Fermi-Orbital descriptors (FODs), and a set of N-orthonormal single-electron orbitals. FOD positions, when optimized, minimize the PZSIC total energy. However, creating sets of starting FODs that lead to a positive definite Fermi orbital overlap matrix has proven to be challenging for systems composed of open-shell atoms and ions. The proof herein guarantees the existence of a FLOSIC solution and further guarantees that if a solution for N electrons is found, it can be used to generate a minimum of N - 1 and a maximum of 2N - 2 initial starting points for systems composed of a smaller number of electrons. Applications to heavy and super-heavy atoms are presented. All starting solutions reported here were obtained from a solution for element 118, Oganesson.
Collapse
Affiliation(s)
- Mark R Pederson
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Alexander I Johnson
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | | | - Sherab Dolma
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Gustavo Bravo Flores
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Zahra Hooshmand
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Kusal Khandal
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Peter O Lasode
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Koblar A Jackson
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
5
|
Shukla PB, Mishra P, Baruah T, Zope RR, Jackson KA, Johnson JK. How Do Self-Interaction Errors Associated with Stretched Bonds Affect Barrier Height Predictions? J Phys Chem A 2023; 127:1750-1759. [PMID: 36787213 PMCID: PMC10032567 DOI: 10.1021/acs.jpca.2c07894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Density functional theory (DFT) suffers from self-interaction errors (SIEs) that generally result in the underestimation of chemical reaction barrier heights. This is commonly attributed to the tendency of density functional approximations to overstabilize delocalized densities that typically occur in the stretched bonds of transition state structures. The Perdew-Zunger self-interaction correction (PZSIC) and locally scaled self-interaction correction (LSIC) improve the prediction of barrier heights of chemical reactions, with LSIC giving better accuracy than PZSIC on average. These methods employ an orbital-by-orbital correction scheme to remove the one-electron SIE. In the context of barrier heights, this allows an analysis of how the self-interaction correction (SIC) for each orbital contributes to the calculated barriers using Fermi-Löwdin orbitals (FLOs). We hypothesize that the SIC contribution to the reaction barrier comes mainly from a limited number of orbitals that are directly involved in bond-breaking and bond-making in the reaction transition state. We call these participant orbitals (POs), in contrast to spectator orbitals (SOs) which are not directly involved in changes to the bonding. Our hypothesis is that ΔETotalSIC ≈ ΔEPOSIC, where ΔETotalSIC is the difference in the SIC corrections for the reactants or products and the transition state. We test this hypothesis for the reaction barriers of the BH76 benchmark set of reactions. We find that the stretched-bond orbitals indeed make the largest individual SIC contributions to the barriers. These contributions increase the barrier heights relative to LSDA, which underpredicts the barrier. However, the full stretched-bond hypothesis does not hold in all cases for either PZSIC or LSIC. There are many cases where the total SIC contribution from the SOs is significant and cannot be ignored. The size of the SIC contribution to the barrier height is a key indicator. A large SIC correction is correlated to a large LSDA error in the barrier, showing that PZSIC properly gives larger corrections when corrections are needed most. A comparison of the performance of PZSIC and LSIC shows that the two methods have similar accuracy for reactions with large LSDA errors, but LSIC is clearly better for reactions with small errors. We trace this to an improved description of reaction energies in LSIC.
Collapse
Affiliation(s)
- Priyanka B Shukla
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Prakash Mishra
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Tunna Baruah
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rajendra R Zope
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Koblar A Jackson
- Physics Department and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - J Karl Johnson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Yamamoto Y, Baruah T, Chang PH, Romero S, Zope RR. Self-consistent implementation of locally scaled self-interaction-correction method. J Chem Phys 2023; 158:064114. [PMID: 36792502 DOI: 10.1063/5.0130436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys. 151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange-correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew-Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn-Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of the AE6 dataset better than some of the most widely used generalized-gradient-approximation (GGA) functional [e.g., Perdew-Burke-Ernzerhof (PBE)] and barrier heights of the BH6 database better than some of the most widely used hybrid functionals (e.g., PBE0 and B3LYP). The LSIC method [a mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.
Collapse
Affiliation(s)
- Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Po-Hao Chang
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Selim Romero
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
7
|
Bryenton KR, Adeleke AA, Dale SG, Johnson ER. Delocalization error: The greatest outstanding challenge in density‐functional theory. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle R. Bryenton
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
| | | | - Stephen G. Dale
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| | - Erin R. Johnson
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
- Department of Chemistry Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
8
|
Withanage KPK, Jackson KA, Pederson MR. Complex Fermi-Löwdin orbital self-interaction correction. J Chem Phys 2022; 156:231103. [PMID: 35732520 DOI: 10.1063/5.0091212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper introduces the use of complex Fermi orbital descriptors (FODs) in the Fermi-Löwdin self-interaction-corrected density functional theory (FLOSIC). With complex FODs, the Fermi-Löwdin orbitals (FLOs) that are used to evaluate the SIC correction to the total energy become complex. Complex FLO-SIC (cFLOSIC) calculations based on the local spin density approximation produce total energies that are generally lower than the corresponding energies found with FLOSIC restricted to real orbitals (rFLOSIC). The cFLOSIC results are qualitatively similar to earlier Perdew-Zunger SIC (PZ-SIC) calculations using complex orbitals [J. Chem. Phys. 80, 1972 (1984); Phys. Rev. A 84, 050501(R) (2011); and J. Chem. Phys. 137, 124102 (2012)]. The energy lowering stems from the exchange-correlation part of the self-interaction correction. The Hartree part of the correction is more negative in rFLOSIC. The energy difference between real and complex solutions is greater for more strongly hybridized FLOs in atoms and for FLOs corresponding to double and triple bonds in molecules. The case of N2 is examined in detail to show the differences between the real and complex FLOs. We show that the complex triple-bond orbitals are simple, and physically appealing combinations of π and σg orbitals that have not been discussed before. Consideration of complex FODs, and resulting unitary transformations, underscores the fact that FLO centroids are not necessarily good guesses for FOD positions in a FLOSIC calculation.
Collapse
Affiliation(s)
| | - Koblar A Jackson
- Department of Physics, Central Michigan Universiy, Mount Pleasant, Michigan 48859, USA
| | - Mark R Pederson
- Department of Physics, the University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
9
|
Withanage KPK, Sharkas K, Johnson JK, Perdew JP, Peralta JE, Jackson KA. Fermi–Löwdin orbital self-interaction correction of adsorption energies on transition metal ions. J Chem Phys 2022; 156:134102. [DOI: 10.1063/5.0078970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Density functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu+, Zn+, Zn2+, and Mn+ in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew–Zunger self-interaction correction (PZ-SIC) in the Fermi–Löwdin Orbital (FLO) SIC framework. In the case of FLO-PBE, typical errors are reduced to less than 0.1 eV. Analysis of the results using DFT energies evaluated on self-interaction-corrected densities [DFT(@FLO)] indicates that the density-driven contributions to the FLO-DFT adsorption energy corrections are roughly the same size in DFT = LSDA and PBE, but the total corrections due to removing self-interaction are larger in LSDA.
Collapse
Affiliation(s)
- Kushantha P. K. Withanage
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Kamal Sharkas
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - J. Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - John P. Perdew
- Department of Physics and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Juan E. Peralta
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Koblar A. Jackson
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
10
|
Mishra P, Yamamoto Y, Chang PH, Nguyen DB, Peralta JE, Baruah T, Zope RR. Study of Self-Interaction Errors in Density Functional Calculations of Magnetic Exchange Coupling Constants Using Three Self-Interaction Correction Methods. J Phys Chem A 2022; 126:1923-1935. [PMID: 35302373 DOI: 10.1021/acs.jpca.1c10354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examine the role of self-interaction error (SIE) removal on the evaluation of magnetic exchange coupling constants. In particular, we analyze the effect of scaling down the self-interaction correction (SIC) for three nonempirical density functional approximations (DFAs) namely, the local spin density approximation, the Perdew-Burke-Ernzerhof generalized gradient approximation, and the recent SCAN family of meta-GGA functionals. To this end, we employ three one-electron SIC methods: Perdew-Zunger SIC [Perdew, J. P.; Zunger, A. Phys. Rev. B, 1981, 23, 5048.], the orbitalwise scaled SIC method [Vydrov, O. A. et al. J. Chem. Phys. 2006, 124, 094108.], and the recent local scaling method [Zope, R. R. et al. J. Chem. Phys. 2019, 151, 214108.]. We compute the magnetic exchange coupling constants using the spin projection and nonprojection approaches for sets of molecules composed of dinuclear and polynuclear H···He models, organic radical molecules, and chlorocuprate and compare these results against accurate theories and experiment. Our results show that for the systems that mainly consist of single-electron regions, PZSIC performs well, but for more complex organic systems and the chlorocuprates, an overcorrecting tendency of PZSIC combined with the DFAs utilized in this work is more pronounced, and in such cases, LSIC with kinetic energy density ratio performs better than PZSIC. Analysis of the results in terms of SIC corrections to the density and to the total energy shows that both density and energy correction are required to obtain an improved prediction of magnetic exchange couplings.
Collapse
Affiliation(s)
- Prakash Mishra
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Po-Hao Chang
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Duyen B Nguyen
- Physics Department and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Juan E Peralta
- Physics Department and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Tunna Baruah
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, United States.,Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rajendra R Zope
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, United States.,Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
11
|
Mishra P, Yamamoto Y, Johnson JK, Jackson KA, Zope RR, Baruah T. Study of self-interaction-errors in barrier heights using locally scaled and Perdew-Zunger self-interaction methods. J Chem Phys 2022; 156:014306. [PMID: 34998352 DOI: 10.1063/5.0070893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We study the effect of self-interaction errors on the barrier heights of chemical reactions. For this purpose, we use the well-known Perdew-Zunger self-interaction-correction (PZSIC) [J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)] as well as two variations of the recently developed, locally scaled self-interaction correction (LSIC) [Zope et al., J. Chem. Phys. 151, 214108 (2019)] to study the barrier heights of the BH76 benchmark dataset. Our results show that both PZSIC and especially the LSIC methods improve the barrier heights relative to the local density approximation (LDA). The version of LSIC that uses the iso-orbital indicator z as a scaling factor gives a more consistent improvement than an alternative version that uses an orbital-dependent factor w based on the ratio of orbital densities to the total electron density. We show that LDA energies evaluated using the self-consistent and self-interaction-free PZSIC densities can be used to assess density-driven errors. The LDA reaction barrier errors for the BH76 set are found to contain significant density-driven errors for all types of reactions contained in the set, but the corrections due to adding SIC to the functional are much larger than those stemming from the density for the hydrogen transfer reactions and of roughly equal size for the non-hydrogen transfer reactions.
Collapse
Affiliation(s)
- Prakash Mishra
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Koblar A Jackson
- Physics Department and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Rajendra R Zope
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|