1
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Tedy AM, Manna AK. Tailoring intersystem crossing in phosphorus corroles through axial chalcogenation: a detailed theoretical study. Phys Chem Chem Phys 2024; 26:27466-27477. [PMID: 39449611 DOI: 10.1039/d4cp03226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Intersystem crossing (ISC) of visible-light absorbing metal-free corrole macrocycles can be greatly tuned by means of suitable chemical functionalization. Axially chalcogenated phosphorus corrole derivatives (XPCs; X = O, S, Se) are expected to show large spin-orbit coupling (SOC) via the heavy-atom effect and therefore a much improved ISC. Excited-state deactivation of XPCs including PC is studied using time-dependent optimally tuned range-separated hybrid functionals combined with a polarizable continuum model with toluene as a dielectric medium to account for polar solvent effects. PC and all XPCs are dynamically stable and also show favourable thermodynamic formation feasibility as confirmed by Gibbs free energy analysis. In spite of the relatively smaller contribution of P and X to the frontier molecular orbitals compared to the tetrapyrrolic ring, SOC is considerably improved due to the heavy-atom effect. While PC shows a one-order larger ISC rate of ∼107 s-1 than fluorescence, competitive fluorescence and ISC rates of ∼107 s-1 are found for OPC. In contrast, both SPC and SePC exhibit significantly larger ISC rates of ∼109 s-1 and ∼1013 s-1, respectively, with much smaller fluorescence rates of ∼107 s-1. Importantly, the first report of anti-Kasha's emission in metal-free corroles is predicted for OPC with a radiative rate of ∼109 s-1. Furthermore, calculated phosphorescence and ISC rates from the near-degenerate lowest excited triplets to the ground-state suggest millisecond to microsecond triplet lifetimes, signalling towards long-lived excited triplet formation. Overall, all three XPCs including PC could act as triplet photosensitizers and especially both SPC and SePC are predicted to be the highly efficient ones.
Collapse
Affiliation(s)
- Annette Mariya Tedy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, AP 517619, India.
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, AP 517619, India.
| |
Collapse
|
3
|
Peng Y, Hu C, Zhang L, Dong F, Li R, Liang H, Dai H, Jang WJ, Cheng HB, Zhou L, Wang Y, Yoon J. Harnessing Dual Phototherapy and Immune Activation for Cancer Treatment: The Development and Application of BODIPY@F127 Nanoparticles. Adv Healthc Mater 2024; 13:e2401981. [PMID: 39073014 DOI: 10.1002/adhm.202401981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Conventional phototherapeutic agents are typically used in either photodynamic therapy (PDT) or photothermal therapy (PTT). However, efficacy is often hindered by hypoxia and elevated levels of heat shock proteins in the tumor microenvironment (TME). To address these limitations, a formylated, near-infrared (NIR)-absorbing and heavy-atom-free Aza-BODIPY dye is presented that exhibits both type-I and type-II PDT actions with a high yield of reactive oxygen species (ROS) and manifests efficient photothermal conversion by precise adjustments to the conjugate structure and electron distribution, leading to a large amount of ROS production even under severe hypoxia. To improve biosafety and water solubility, the dye with an amphiphilic triblock copolymer (Pluronic F-127), yielding BDP-6@F127 nanoparticles (NPs) is coated. Furthermore, inspired by the fact that phototherapy triggers the release of tumor-associated antigens, a strategy that leverages potential immune activation by combining PDT/PTT with immune checkpoint blockade (ICB) therapy to amplify the systemic immune response and achieve the much-desired abscopal effect is developed. In conclusion, this study presents a promising molecular design strategy that integrates multimodal therapeutics for a precise and effective approach to cancer therapy.
Collapse
Affiliation(s)
- Yang Peng
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Chenyan Hu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ludan Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Fan Dong
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Ruwan Li
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Huihui Liang
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hao Dai
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuguang Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
4
|
Garain S, Li PL, Shoyama K, Würthner F. 2,3 : 6,7-Naphthalene Bis(dicarboximide) Cyclophane: A Photofunctional Host for Ambient Delayed Fluorescence in Solution. Angew Chem Int Ed Engl 2024; 63:e202411102. [PMID: 39003722 DOI: 10.1002/anie.202411102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Harvesting triplet excitons of heavy atom-free purely organic chromophores under aerated conditions is challenging due to the quenching of long-lived triplet states by molecular oxygen and vibrational dissipation. Herein, we show a supramolecular approach of triplet harvesting via mitigating quenching pathways of a triplet harvester. Specifically, we used a host-guest system based on 2,3 : 6,7-naphthalene bis(dicarboximide)-derived cyclophane (NBICy) and carbazole derivative (EtCz). Complexation studies and single-crystal X-ray analysis showed the formation of a rigid host-guest complex (K≈104 M-1 in CCl4), resulting in triplet-exciton stabilization under aerated conditions via mitigating vibrational interference and oxygen quenching. Photophysical studies elucidate the delayed fluorescence emission from the charge-transfer state (1CT) with a quantum yield (QY) of 6-8 % under ambient conditions which increased up to 36 % in an inert atmosphere.
Collapse
Affiliation(s)
- Swadhin Garain
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Pei-Lun Li
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
5
|
Chen S, Li J, Yin W, Li W, He X, Liang H, Mahmood Z, Huo Y, Zhao Z, Ji S. Phototherapeutic applications of benzophenone-containing NIR-emitting photosensitizers based on different receptor modulations. J Mater Chem B 2024; 12:9533-9544. [PMID: 39314202 DOI: 10.1039/d4tb01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Photodynamic therapy (PDT) plays a crucial role in treating cancer and major infectious diseases. However, the hypoxic microenvironment and deep-seated tumors often compromise the effectiveness of photosensitizers (PSs). PSs primarily generate type-II reactive oxygen species (ROS), which are limited under hypoxic conditions. Pyridinium salts frequently exhibit critical dark toxicity in vitro. Moreover, PDT alone often fails to achieve optimal anti-tumor effects compared to its combined application with photothermal therapy (PTT). To address these issues, we replaced pyridinium with quinolinium, significantly reducing dark toxicity. Additionally, the incorporation of benzophenone enhanced ROS generation, achieving a synergistic effect of type-I and type-II PDT. Fine-tuning the conjugated structure enhanced the donor-acceptor (D-A) intensity, while the stretching vibrations of carbon-carbon double bonds and carbon-nitrogen triple bonds red-shifted the excitation wavelength to the near-infrared (NIR) region and improved the photothermal conversion efficiency (PCE). This strategy provides a molecular design approach for achieving synergy between PDT and PTT. The synthesized four NIR-emitting aggregation-induced emission quinolinium salts exhibited mitochondrial targeting ability and low dark toxicity. Among them, FCN-TPAQ-BP showed excellent ROS generation capability, a PCE of 39.2%, good biocompatibility, and low dark toxicity, making it an ideal candidate for enhancing PDT's antitumor efficacy.
Collapse
Affiliation(s)
- Shuge Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Weidong Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xitong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zarfar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Shaomin Ji
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Chen X, Liang H, He X, Li W, Nian Z, Mahmood Z, Huo Y, Ji S. Exploring the triplet state properties of thio-benzothioxanthene imides with applications in TTA-upconversion and photopolymerization. Chem Commun (Camb) 2024; 60:11132-11135. [PMID: 39269145 DOI: 10.1039/d4cc04049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Thio-benzothioxanthene imide (BTXI) exhibits long excited state lifetime (τT = 17.7 μs) and high ISC efficiency (ΦΔ = 97%). For the first time, BTXI derivatives were used as photosensitizers for triplet-triplet annihilation upconversion, achieving the highest efficiency of 13.8%. In addition, thio-BTXI derivatives were used as photoinitiators for photopolymerization, resulting in a series of green light-activated radical polymerization systems.
Collapse
Affiliation(s)
- Xiaoping Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xitong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zhiyao Nian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
7
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
8
|
Lin L, Liu J, Pan Z, Pang W, Jiang X, Lei M, Gao J, Xiao Y, Li B, Hu F, Bao Z, Wei X, Wu W, Gu B. General Post-Regulation Strategy of AIEgens' Photophysical Properties for Intravital Two-Photon Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404792. [PMID: 39119825 PMCID: PMC11481373 DOI: 10.1002/advs.202404792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Fluorogens with aggregation-induced emission (AIEgens) are promising agents for two-photon fluorescence (TPF) imaging. However, AIEgens' photophysical properties are fixed and unoptimizable once synthesized. Therefore, it is urgent and meaningful to explore an efficient post-regulation strategy to optimize AIEgens' photophysical properties. Herein, a general and efficient post-regulation strategy is reported. By simply tuning the ratio of inert AIEgens within binary nanoparticles (BNPs), the fluorescence quantum yield and two-photon absorption cross-section of functional AIEgens are enhanced by 8.7 and 5.4 times respectively, which are not achievable by conventional strategies, and the notorious phototoxicity is almost eliminated. The experimental results, theoretical simulation, and mechanism analysis demonstrated its feasibility and generality. The BNPs enabled deep cerebrovascular network imaging with ≈1.10 mm depth and metastatic cancer cell detection with single-cell resolution. Furthermore, the TPF imaging quality is improved by the self-supervised denoising algorithm. The proposed binary molecular post-regulation strategy opened a new avenue to efficiently boost the AIEgens' photophysical properties and consequently TPF imaging quality.
Collapse
Affiliation(s)
- Liyun Lin
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jiaxin Liu
- Department of ChemistryInstitute of Molecular Aggregation ScienceTianjin UniversityTianjin300072China
| | - Zhengyuan Pan
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Wen Pang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xinyan Jiang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Man Lei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jucai Gao
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Yujie Xiao
- Department of NeurologyHuashan HospitalMOE Frontiers Center for Brain ScienceState Key Laboratory of Medical NeurobiologyInstitutes for Translational Brain ResearchFudan UniversityShanghai200437China
| | - Bo Li
- Department of NeurologyHuashan HospitalMOE Frontiers Center for Brain ScienceState Key Laboratory of Medical NeurobiologyInstitutes for Translational Brain ResearchFudan UniversityShanghai200437China
| | - Fang Hu
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Zhouzhou Bao
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xunbin Wei
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijing100142China
- Biomedical Engineering Department and International Cancer InstitutePeking UniversityBeijing100191China
| | - Wenbo Wu
- Department of ChemistryInstitute of Molecular Aggregation ScienceTianjin UniversityTianjin300072China
| | - Bobo Gu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
9
|
Gu J, Yuan W, Chang K, Zhong C, Yuan Y, Li J, Zhang Y, Deng T, Fan Y, Yuan L, Liu S, Xu Y, Ling S, Li C, Zhao Z, Li Q, Li Z, Tang BZ. Organic Materials with Ultrabright Phosphorescence at Room Temperature under Physiological Conditions for Bioimaging. Angew Chem Int Ed Engl 2024:e202415637. [PMID: 39327548 DOI: 10.1002/anie.202415637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
In contrast to the high efficiency of room temperature phosphorescence in crystal states, the generally utilized nanoparticles of organic materials in bioimaging demonstrated sharply decreased performance by orders of magnitude under physiological conditions, badly limiting the realization of their unique advantages. This case, especially for organic red/near-infrared (NIR) phosphorescence materials, is not only the challenge present in reality but more importantly, for the theoretical problem of deeply understanding and avoiding the quenching effect by oxygen and water toward excited triplet states. Herein, thanks to the intelligent molecular design by the introduction of abundant hydrophobic chains and highly-branched structures, bright and persistent red/NIR phosphorescence under physiological conditions has been realized, which demonstrated the shielding effect towards oxygen, and the strengthened intermolecular interactions to suppress the non-radiative transitions. Accordingly, the record phosphorescence intensity of nanoparticles in bioimage, up to 8.21±0.36×108 p s-1 cm-2 sr-1, was achieved, to realize the clear phosphorescence imaging of liver and tumors in living mice, even lymph nodes in rabbit models with high SBRs. This work afforded an efficient way to achieve the bright red/NIR phosphorescence nanoparticles, guiding their further applications in biology and medicine.
Collapse
Affiliation(s)
- Juqing Gu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Wentao Yuan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Kai Chang
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Cheng Zhong
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yufeng Yuan
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jinghua Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yufeng Zhang
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Tian Deng
- School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yuanyuan Fan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Likai Yuan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Siwei Liu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yongzhen Xu
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Sisi Ling
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
10
|
Rühe J, Vinod K, Hoh H, Shoyama K, Hariharan M, Würthner F. Guest-Mediated Modulation of Photophysical Pathways in a Coronene Bisimide Cyclophane. J Am Chem Soc 2024. [PMID: 39264316 DOI: 10.1021/jacs.4c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The properties and functions of chromophores utilized by nature are strongly affected by the environment formed by the protein structure in the cells surrounding them. This concept is transferred here to host-guest complexes with the encapsulated guests acting as an environmental stimulus. A new cyclophane host based on coronene bisimide is presented that can encapsulate a wide variety of planar guest molecules with binding constants up to (4.29 ± 0.32) × 1010 M-1 in chloroform. Depending on the properties of the chosen guest, the excited state deactivation of the coronene bisimide chromophore can be tuned by the formation of host-guest complexes toward fluorescence, exciplex formation, charge separation, room-temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). The photophysical processes were investigated by UV/vis absorption, emission, and femto- and nanosecond transient absorption spectroscopy. To enhance the TADF, two different strategies were used by employing suitable guests: the reduction of the singlet-triplet gap by exciplex formation and the external heavy atom effect. Altogether, by using supramolecular host-guest complexation, a versatile multimodal chromophore system is achieved with the coronene bisimide cyclophane.
Collapse
Affiliation(s)
- Jessica Rühe
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Hanna Hoh
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Mohanty P, Sarang S, Rout S, Biswal HS. Thio and Seleno Derivatives of Angelicin as Efficient Triplet Harvesting Photosensitizers: Implications in Photodynamic Therapy. Chemphyschem 2024:e202400636. [PMID: 39229811 DOI: 10.1002/cphc.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
Photodynamic therapy (PDT) is widely accepted in medical practice for its targeted induction of apoptosis in cancerous cells. Angelicin (Ang) has traditionally been known for its efficacy in cancer treatment and its capability to enter a photoexcited triplet state. This study has comprehensively assessed the effects of substituting individual chalcogen atoms at three specific positions in Angelicin, with the objective of facilitating access to this elusive triplet state to enhance its role as a photosensitizer in PDT. The study scrutinizes various enhancements and factors that are crucial for efficient triplet harvesting. The decrease in singlet-triplet energy gap (ΔEST) and increased spin-orbit coupling (SOC) values present numerous viable pathways for intersystem crossing (ISC), leading to the triplet manifold. The lifetime of ISC, thus, decreases from 10-5 s-1 in Ang to 10-8 s-1 in thioangelicin (TAng) and finally to 10-9 s-1 in selenoangelicin (SeAng). Additionally, this study investigates the two-photon absorption properties of thio and seleno-substituted Angelicin for their potentialities as non-UV photosensitizers. The interplay between electron-withdrawing and electron-donating substitutions in these derivatives significantly enhances the two-photon absorption cross-sections (σ) to as high as 49.3 GM while shifting the absorption wavelengths towards the infrared region enabling them as efficient PDT photosensitizers.
Collapse
Affiliation(s)
- Pranay Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - S Sarang
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Saiprakash Rout
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
12
|
Bhowmik S, Dutta A, Sen P. Ultrafast Intersystem Crossing in Benzanthrone: Effect of Hydrogen Bonding and Viscosity. J Phys Chem A 2024; 128:6864-6878. [PMID: 39129382 DOI: 10.1021/acs.jpca.4c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Understanding the intricate factors governing intersystem crossing (ISC) in aromatic carbonyl compounds remains a long-standing interest among researchers. This study unveils the crucial roles of vibration in influencing the ISC of a typical aromatic carbonyl chromophore, benzanthrone, and how hydrogen bonding and solvent viscosity affect these vibrations and, thus, the associated ISC kinetics. We demonstrate that for benzanthrone, the ISC is exceedingly facile in an aprotic solvent, while in protic solvents, the ISC is significantly suppressed through the formation of the hydrogen-bonded state. Moreover, in a high-viscosity medium, ISC is further retarded due to restrictions of volume-changing motions, which may assist ISC. Theoretical calculations revealed that the C═O bond vibration and specific out-of-plane vibrations accompanying a volume change could be the probable coordinates for ISC. These findings provide valuable insights for tailoring the excited-state behavior of carbonyl-functionalized materials for diverse applications in photocatalysis, organic electronics, and biomedicine.
Collapse
Affiliation(s)
- Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Abhijit Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| |
Collapse
|
13
|
Niyas MA, Garain S, Shoyama K, Würthner F. Room-Temperature Near-Infrared Phosphorescence from C 64 Nanographene Tetraimide by π-Stacking Complexation with Platinum Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202406353. [PMID: 38713529 DOI: 10.1002/anie.202406353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
Near-Infrared (NIR) phosphorescence at room temperature is challenging to achieve for organic molecules due to negligible spin-orbit coupling and a low energy gap leading to fast non-radiative transitions. Here, we show a supramolecular host-guest strategy to harvest the energy from the low-lying triplet state of C64 nanographene tetraimide 1. 1H NMR and X-ray analysis confirmed the 1 : 2 stoichiometric binding of a Pt(II) porphyrin on the two π-surfaces of 1. While the free 1 does not show emission in the NIR, the host-guest complex solution shows NIR phosphorescence at 77 K. Further, between 860-1100 nm, room temperature NIR phosphorescence (λmax=900 nm, τavg=142 μs) was observed for a solid-state sample drop-casted from a preformed complex in solution. Theoretical calculations reveal a non-zero spin-orbit coupling between isoenergetic S1 and T3 of π-stacked [1 ⋅ Pt(II) porphyrin] complex. External heavy-atom-induced spin-orbit coupling along with rigidification and protection from oxygen in the solid-state promotes both the intersystem crossing from the first excited singlet state into the triplet manifold and the NIR phosphorescence from the lowest triplet state of 1.
Collapse
Affiliation(s)
- M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Swadhin Garain
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
14
|
Xia J, Xie S, Huang Y, Wu XX, Lu B. Emerging A-D-A fused-ring photosensitizers for tumor phototheranostics. Chem Commun (Camb) 2024; 60:8526-8536. [PMID: 39039905 DOI: 10.1039/d4cc02596b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As we all know, cancer is still a disease that we are struggling against. Although the traditional treatment options are still the mainstream in clinical practice, emerging phototheranostics technologies based on photoacoustic or fluorescence imaging-guided phototherapy also provide a new exploration direction for non-invasive, low-risk and highly efficient cancer treatment. Photosensitizers are the core materials to accomplish this mission. Recently, more attention has been paid to the emerging A-D-A fused-ring photosensitizers. A-D-A fused-ring photosensitizers display strong and wide absorption spectra, high photostability and easy molecular modification. Since this type of photosensitizer was first used for tumor therapy in 2019, its application boundaries are constantly expanding. Therefore, in this feature article, from the perspective of molecular design, we focused on the development of these molecules for application in phototheranostics over the past five years. The effects of tiny structural changes on their photophysical properties are discussed in detail, which provides a way for structural optimization of the subsequent A-D-A photosensitizers.
Collapse
Affiliation(s)
- Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin-Xing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
15
|
Garain S, Shoyama K, Ginder LM, Sárosi M, Würthner F. The Delayed Box: Biphenyl Bisimide Cyclophane, a Supramolecular Nano-environment for the Efficient Generation of Delayed Fluorescence. J Am Chem Soc 2024; 146:22056-22063. [PMID: 39047068 PMCID: PMC11311229 DOI: 10.1021/jacs.4c07730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Activating delayed fluorescence emission in a dilute solution via a non-covalent approach is a formidable challenge. In this report, we propose a strategy for efficient delayed fluorescence generation in dilute solution using a non-covalent approach via supramolecularly engineered cyclophane-based nanoenvironments that provide sufficient binding strength to π-conjugated guests and that can stabilize triplet excitons by reducing vibrational dissipation and lowering the singlet-triplet energy gap for efficient delayed fluorescence emission. Toward this goal, a novel biphenyl bisimide-derived cyclophane is introduced as an electron-deficient and efficient triplet-generating host. Upon encapsulation of various carbazole-derived guests inside the nanocavity of this cyclophane, emissive charge transfer (CT) states close to the triplet energy level of the biphenyl bisimide are generated. The experimental results of host-guest studies manifest high association constants up to 104 M-1 as the prerequisite for inclusion complex formation, the generation of emissive CT states, and triplet-state stabilization in a diluted solution state. By means of different carbazole guest molecules, we could realize tunable delayed fluorescence emission in this carbazole-encapsulated biphenyl bisimide cyclophane in methylcyclohexane/carbon tetrachloride solutions with a quantum yield (QY) of up to 15.6%. Crystal structure analyses and solid-state photophysical studies validate the conclusions from our solution studies and provide insights into the delayed fluorescence emission mechanism.
Collapse
Affiliation(s)
- Swadhin Garain
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074 Würzburg, Germany
| | - Lea-Marleen Ginder
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
| | - Menyhárt Sárosi
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Ye K, Carbonera D, Liao S, Zhang X, Chen X, Xiao X, Zhao J, Shanmugam M, Li M, Barbon A. Multiple Pathways in the Triplet States Population for a Naphthalenediimide-C 60 Dyad. Chemistry 2024; 30:e202401084. [PMID: 38819870 DOI: 10.1002/chem.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The link of an antenna dye with an electron spin converter, in this case naphthalenediimide and C60, produces a system with a rich photophysics including the detection of more than one triplet state on the long timescale (tens of μs). Beside the use of optical spectroscopies in the ns and in the fs time scale, we used time-resolved Electron Paramagnetic Resonance (TREPR) to study the system evolution following photoexcitation. TREPR keeps track of the formation path of the triplet states through specific spin polarization patterns observed in the spectra. The flexibility of the linker and solvent polarity play a role in favouring either electron transfer or energy transfer processes.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| | - Sheng Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35134, Padova, Italy
| |
Collapse
|
17
|
Manna AK. Thiocarbonyl-Bridged N-Heterotriangulenes for Energy Efficient Triplet Photosensitization: A Theoretical Perspective. Chemphyschem 2024; 25:e202400371. [PMID: 38700483 DOI: 10.1002/cphc.202400371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Structurally-rigid metal-free organic molecules are of high demand for various triplet harvesting applications. However, inefficient intersystem crossing (ISC) due to large singlet-triplet gap (Δ E S - T ${\Delta {E}_{S-T}}$ ) and small spin-orbit coupling (SOC) between lowest excited singlet and triplet often limits their efficiency. Excited electronic states, fluorescence and ISC rates in several thiocarbonyl-bridged N-heterotriangulene ( m ${m}$ S-HTG) with systematically increased thione content (m = ${m=}$ 0-3) are investigated implementing polarization consistent time-dependent optimally-tuned range-separated hybrid. All m ${m}$ S-HTGs are dynamically stable and also thermodynamically feasible to synthesize. Relative energies of several low-lying singlets (S n ${{S}_{n}}$ ) and triplets (T n ${{T}_{n}}$ ), and their excitation nature (i. e.,n π * ${n{\pi }^{^{\ast}}}$ orπ π * ${\pi {\pi }^{^{\ast}}}$ ) and SOC are determined for these m ${m}$ S-HTGs in dichloromethane. Low-energy optical peak displays gradual red-shift with increasing thione content due to relatively smaller electronic gap resulted from greater degree of orbital delocalization. Significantly large SOC due to different orbital-symmetry and heavy-atom effect produces remarkably high ISC rates (k I S C ${{k}_{ISC}}$ ~1012 s-1) for enthalpically favouredS 1 n π * → T 2 ${{S}_{1}\left(n{\pi }^{^{\ast}}\right)\to {T}_{2}}$ (π π * ${\pi {\pi }^{^{\ast}}}$ ) channel in these m ${m}$ S-HTGs, which outcompete radiative fluorescence rates (~108 s-1) even directly from higher lying optically brightπ π * ${\pi {\pi }^{^{\ast}}}$ singlets. Importantly, high energy triplet excitons of ~1.7 eV resulting from such significantly large ISC rates from non-fluorescentS 1 n π * ${{S}_{1}\left(n{\pi }^{^{\ast}}\right)}$ make these thiocarbonylated HTGs ideal candidates for energy efficient triplet harvest including triplet-photosensitization.
Collapse
Affiliation(s)
- Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, 517619, Tirupati, Andhra Pradesh, India
| |
Collapse
|
18
|
Liang H, Zhang X, Lu M, Chen X, Li W, Li S, Li MD, Zhao J, Huo Y, Ji S. Novel Photocatalyst Based on Through-Space Charge Transfer Induced Intersystem Crossing Enables Rapid and Efficient Polymerization Under Low-Power Excitation Light. Angew Chem Int Ed Engl 2024; 63:e202402774. [PMID: 38584586 DOI: 10.1002/anie.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Currently, most photoredox catalysis polymerization systems are limited by high excitation power, long polymerization time, or the requirement of electron donors due to the precise design of efficient photocatalysts still poses a great challenge. Herein, we propose a new approach: the creation of efficient photocatalysts having low ground state oxidation potentials and high excited state energy levels, along with through-space charge transfer (TSCT) induced intersystem crossing (ISC) properties. A cabazole-naphthalimide (NI) dyad (NI-1) characterized by long triplet excited state lifetime (τT=62 μs), satisfactory ISC efficiency (ΦΔ=54.3 %) and powerful reduction capacity [Singlet: E1/2 (PC+1/*PC)=-1.93 eV, Triplet: E1/2 (PC+1/*PC)=-0.84 eV] was obtained. An efficient and rapid polymerization (83 % conversion of 1 mM monomer in 30 s) was observed under the conditions of without electron donor, low excitation power (10 mW cm-2) and low catalyst (NI-1) loading (<50 μM). In contrast, the conversion rate was lower at 29 % when the reference catalyst (NI-4) was used for photopolymerization under the same conditions, demonstrating the advantage of the TSCT photocatalyst. Finally, the TSCT material was used as a photocatalyst in practical lithography for the first time, achieving pattern resolutions of up to 10 μm.
Collapse
Affiliation(s)
- Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Manlin Lu
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P.R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shangru Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
19
|
Aebisher D, Serafin I, Batóg-Szczęch K, Dynarowicz K, Chodurek E, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy in the Treatment of Cancer-The Selection of Synthetic Photosensitizers. Pharmaceuticals (Basel) 2024; 17:932. [PMID: 39065781 PMCID: PMC11279632 DOI: 10.3390/ph17070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody-drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | | | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8 Str., 41-200 Sosnowiec, Poland;
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
20
|
Jena S, Mohanty P, Rout Rout S, Kumar Pati S, Biswal HS. Thio and Seleno-Psoralens as Efficient Triplet Harvesting Photosensitizers for Photodynamic Therapy. Chemistry 2024; 30:e202400733. [PMID: 38758636 DOI: 10.1002/chem.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
The Psoralen (Pso) molecule finds extensive applications in photo-chemotherapy, courtesy of its triplet state forming ability. Sulfur and selenium replacement of exocyclic carbonyl oxygen of organic chromophores foster efficient triplet harvesting with near unity triplet quantum yield. These triplet-forming photosensitizers are useful in Photodynamic Therapy (PDT) applications for selective apoptosis of cancer cells. In this work, we have critically assessed the effect of the sulfur and selenium substitution at the exocyclic carbonyl (TPso and SePso, respectively) and endocyclic oxygen positions of Psoralen. It resulted in a significant redshifted absorption spectrum to access the PDT therapeutic window with increased oscillator strength. The reduction in singlet-triplet energy gap and enhancement in the spin-orbit coupling values increase the number of intersystem crossing (ISC) pathways to the triplet manifold, which shortens the ISC lifetime from 10-5 s for Pso to 10-8 s for TPso and 10-9 s for SePso. The intramolecular photo-induced electron transfer process, a competitive pathway to ISC, is also considerably curbed by exocyclic functionalizations. In addition, a maximum of 115 GM of two-photon absorption (2PA) with IR absorption (660-1050 nm) confirms that the Psoralen skeleton can be effectively tweaked via single chalcogen atom replacement to design a suitable PDT photosensitizer.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pranay Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saiprakash Rout Rout
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saswat Kumar Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
21
|
Li S, Gu J, Wang J, Yuan W, Ye G, Yuan L, Liao Q, Wang L, Li Z, Li Q. Excellent Persistent Near-Infrared Room Temperature Phosphorescence from Highly Efficient Host-Guest Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402846. [PMID: 38757635 PMCID: PMC11267349 DOI: 10.1002/advs.202402846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Organic near-infrared (NIR) room temperature phosphorescence (RTP) materials become a hot topic in bioimaging and biosensing for the large penetration depth and high signal-to-background ratio (SBR). However, it is challenging to achieve persistent NIR phosphorescence for severe nonradiative transitions by energy-gap law. Herein, a universal system with persistent NIR RTP is built by visible (host) and NIR phosphorescence (guest) materials, which can efficiently suppress the nonradiative transitions by rigid environment of crystalline host materials with good matching, and further promote phosphorescence emission by the additional phosphorescence resonance energy transfer (≈100%) between them. The persistent NIR phosphorescence with ten-folds enhancement of RTP lifetimes, compared to those of guest luminogens, can be achieved by modulation of aggregated structures of host-guest systems. This work provides a convenient way to largely prolong the phosphorescence lifetimes of various NIR luminogens, promoting their application in afterglow imaging with deeper penetration and higher SBRs.
Collapse
Affiliation(s)
- Shuhui Li
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Juqing Gu
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Jiaqiang Wang
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Wentao Yuan
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Guigui Ye
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Likai Yuan
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Le Wang
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| |
Collapse
|
22
|
Mazumder A, Vinod K, Maret PD, Das PP, Hariharan M. Symmetry-Breaking Charge Separation Mediated Triplet Population in a Perylenediimide Trimer at the Single-Molecule Level. J Phys Chem Lett 2024; 15:5896-5904. [PMID: 38805687 DOI: 10.1021/acs.jpclett.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, we demonstrate triplet excited-state population in a conformationally rigid perylenediimide trimer (PDI-T) via intramolecular symmetry-breaking charge separation (SB-CS) at the single-molecule level. The single-molecule fluorescence intensity trajectories of PDI-T in nonpolar polystyrene matrix (ε = 2.60) exhibit prolonged fluorescence with infrequent dark states, representing the triplet and/or the charge transfer states. In contrast, in a poly(vinyl alcohol) matrix (ε = 7.80), erratic blinking dynamics resulting in low photon counts were observed, corroborating the feasibility of charge separation in a polar environment. In agreement with the single-molecule measurements, transient absorption spectroscopy of PDI-T reveals ultrafast SB-CS (τCS < 5 ps) in polar tetrahydrofuran (ε = 7.58) and acetone (ε = 20.70), with the population of the triplet excited-state through charge recombination. The current investigation shows the utility of rigid and weakly coupled molecular constructs in controlling triplet generation and SB-CS for potential applications in optoelectronic devices.
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Pallavi Panthakkal Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
23
|
Huang X, Liu J, Xu Y, Chen G, Huang M, Yu M, Lv X, Yin X, Zou Y, Miao J, Cao X, Yang C. B‒N covalent bond-involved π-extension of multiple resonance emitters enables high-performance narrowband electroluminescence. Natl Sci Rev 2024; 11:nwae115. [PMID: 38707202 PMCID: PMC11067958 DOI: 10.1093/nsr/nwae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs. The structurally and electronically extended π-system not only enhances molecular rigidity to narrow emission linewidth but also promotes reverse intersystem crossing to mitigate efficiency roll-off. As illustrated examples, ultra-narrowband sky-blue emitters (full-width at half-maximum as small as 8 nm in n-hexane) have been developed with multi-dimensional improvement in photophysical properties compared to their precursor emitters, which enables narrowband OLEDs with external quantum efficiencies (EQEmax) of up to 42.6%, in company with alleviated efficiency decline at high brightness, representing the best efficiency reported for single-host OLEDs. The success of these emitters highlights the effectiveness of our molecular design strategy for advanced MR-TADF emitters and confirms their extensive potential in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xingyu Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiahui Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingxin Yu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
24
|
Vinod K, Jadhav SD, Hariharan M. Room Temperature Phosphorescence in Crystalline Iodinated Eumelanin Monomer. Chemistry 2024; 30:e202400499. [PMID: 38502668 DOI: 10.1002/chem.202400499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
We report the room temperature phosphorescence upon iodination on a crystalline eumelanin monomer with shielded hydroxyl moieties, ethyl 5,6-dimethoxyindole-2-carboxylate (DMICE). Ultrafast intersystem crossing (ISC) is observed in the iodinated (IDMICE) as well as brominated (BDMICE) analogues of the eumelanin monomer derivative in solution. The triplet quantum yields (φT) and intersystem crossing rates (kISC) of the halogenated eumelanin derivatives areφ T B D M I C E ${{\phi{} }_{T}^{BDMICE}}$ =25.4±1.1 %;k I S C B D M I C E ${{k}_{ISC}^{BDMICE}}$ =1.95×109 s-1 andφ T I D M I C E ${{\phi{} }_{T}^{IDMICE}}$ =59.1±1.6 %;k I S C I D M I C E = ${{k}_{ISC}^{IDMICE}=}$ 1.36×1010 s-1, as monitored using transient absorption spectroscopy. Theoretical calculations based on nuclear ensemble method reveal that computed kISC and spin-orbit coupling matrix elements for eumelanin derivatives are larger for IDMICE relative to BDMICE. The halogen and π-π interactions, with distinct excitonic coupling and higher ISC rate promote phosphorescence in IDMICE molecular crystals. Accessing triplet excited states and resultant photoluminescence through structural modification of eumelanin scaffolds paves way for exploring the versatility of eumelanin-inspired molecules as bio-functional materials.
Collapse
Affiliation(s)
- Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| | - Sohan D Jadhav
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| |
Collapse
|
25
|
Puchán Sánchez D, Josse P, Plassais N, Park G, Khan Y, Park Y, Seinfeld M, Guyard A, Allain M, Gohier F, Khrouz L, Lungerich D, Ahn HS, Walker B, Monnereau C, Cabanetos C, Le Bahers T. Driving Triplet State Population in Benzothioxanthene Imide Dyes: Let's twist! Chemistry 2024; 30:e202400191. [PMID: 38498874 DOI: 10.1002/chem.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Controlling the formation of photoexcited triplet states is critical for many (photo)chemical and physical applications. Here, we demonstrate that a permanent out-of-plane distortion of the benzothioxanthene imide (BTI) dye promotes intersystem crossing by increasing spin-orbit coupling. This manipulation was achieved through a subtle chemical modification, specifically the bay-area methylation. Consequently, this simple yet efficient approach expands the catalog of known molecular engineering strategies for synthesizing heavy atom-free, dual redox-active, yet still emissive and synthetically accessible photosensitizers.
Collapse
Affiliation(s)
| | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Nathan Plassais
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
- Department of Physics, University of Seoul, 02504, Seoul, Republic of Korea
| | - Geonwoo Park
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Yeasin Khan
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Yejoo Park
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Mathilde Seinfeld
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Antoine Guyard
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Frédéric Gohier
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), IBS Hall, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyun S Ahn
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Bright Walker
- Department of Chemistry, Kyung Hee University, 730-701 Seoul, Republic of Korea
| | - Cyrille Monnereau
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
| | - Clément Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
- 2BFUEL, IRL CNRS 2002, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Tangui Le Bahers
- ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 L, yon, France E-mail
- Institut Universitaire de France, 5 rue Descartes, 75005, Paris, France
| |
Collapse
|
26
|
Shi C, Gomez-Mendoza M, Gómez de Oliveira E, García-Tecedor M, Barawi M, Esteban-Betegón F, Liras M, Gutiérrez-Puebla E, Monge A, de la Peña O'Shea VA, Gándara F. An anthraquinone-based bismuth-iron metal-organic framework as an efficient photoanode in photoelectrochemical cells. Chem Sci 2024; 15:6860-6866. [PMID: 38725492 PMCID: PMC11077510 DOI: 10.1039/d4sc00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Metal-organic frameworks (MOFs) are appealing candidate materials to design new photoelectrodes for use in solar energy conversion because of their modular nature and chemical versatility. However, to date there are few examples of MOFs that can be directly used as photoelectrodes, for which they must be able to afford charge separation upon light absorption, and promote the catalytic dissociation of water molecules, while maintaining structural integrity. Here, we have explored the use of the organic linker anthraquinone-2, 6-disulfonate (2, 6-AQDS) for the preparation of MOFs to be used as photoanodes. Thus, the reaction of 2, 6-AQDS with Bi(iii) or a combination of Bi(iii) and Fe(iii) resulted in two new MOFs, BiPF-10 and BiFePF-15, respectively. They display similar structural features, where the metal elements are disposed in inorganic-layer building units, which are pillared by the organic linkers by coordination bonds through the sulfonic acid groups. We show that the introduction of iron in the structure plays a crucial role for the practical use of the MOFs as a robust photoelectrode in a photoelectrochemical cell, producing as much as 1.23 mmol H2 cm-2 with the use of BiFePF-15 as photoanode. By means of time-resolved and electrochemical impedance spectroscopic studies we have been able to unravel the charge transfer mechanism, which involves the formation of a radical intermediate species, exhibiting a longer-lived lifetime by the presence of the iron-oxo clusters in BiFePF-15 to reduce the charge transfer resistance.
Collapse
Affiliation(s)
- Cai Shi
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Eloy Gómez de Oliveira
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Fátima Esteban-Betegón
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Enrique Gutiérrez-Puebla
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Angeles Monge
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Felipe Gándara
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| |
Collapse
|
27
|
Govindharaj P, Wierzba AJ, Kęska K, Kochman MA, Wiosna-Sałyga G, Kubas A, Data P, Lindner M. Regioisomerism vs Conformation: Impact of Molecular Design on the Emission Pathway in Organic Light-Emitting Device Emitters. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38668584 PMCID: PMC11082840 DOI: 10.1021/acsami.3c19212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Despite the design and proposal of several new structural motifs as thermally activated delayed fluorescent (TADF) emitters for organic light-emitting device (OLED) applications, the nature of their interaction with the host matrix in the emissive layer of the device and their influence on observed photophysical outputs remain unclear. To address this issue, we present, for the first time, the use of up to four regioisomers bearing a donor-acceptor-donor electronic structure based on the desymmetrized naphthalene benzimidazole scaffold, equipped with various electron-donating units and possessing distinguished conformational lability. Quantum chemical calculations allow us to identify the most favorable conformations adopted by the electron-rich groups across the entire pool of regioisomers. These conformations were then compared with conformational changes caused by the interaction of the emitter with the Zeonex and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) matrices, and the correlation with observed photophysics was monitored by UV-vis absorption and steady-state photoluminescence spectra, combined with time-resolved spectroscopic techniques. Importantly, a CBP matrix was found to have a significant impact on the conformational change of regioisomers, leading to unique TADF emission mechanisms that encompass dual emission and inversion of the singlet-triplet excited-state energies and result in the enhancement of TADF efficiency. As a proof of concept, regioisomers with optimal donor positions were utilized to fabricate an OLED, revealing, with the best-performing dye, an external quantum emission of 11.6%, accompanied by remarkable luminance (28,000 cd/m2). These observations lay the groundwork for a better understanding of the role of the host matrix. In the long term, this new knowledge can lead to predicting the influence of the host matrix and adopting the structure of the emitter in a way that allows the development of highly efficient and efficient OLEDs.
Collapse
Affiliation(s)
- Prasannamani Govindharaj
- Department
of Molecular Physics, Faculty of Chemistry, Łódź University of Technology, Stefana Żeromskiego 114, 90-543 Łódź, Poland
| | - Aleksandra J. Wierzba
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karolina Kęska
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Andrzej Kochman
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Gabriela Wiosna-Sałyga
- Department
of Molecular Physics, Faculty of Chemistry, Łódź University of Technology, Stefana Żeromskiego 114, 90-543 Łódź, Poland
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Przemysław Data
- Department
of Molecular Physics, Faculty of Chemistry, Łódź University of Technology, Stefana Żeromskiego 114, 90-543 Łódź, Poland
| | - Marcin Lindner
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
28
|
Chen X, Luo X, Wang K, You X, Xu J, Peng S, Wu D, Xia J. Efficient Intersystem Crossing in Extended Helical Perylene Diimide Dimers with Chalcogen-Annulation. J Phys Chem B 2024; 128:3964-3971. [PMID: 38602495 DOI: 10.1021/acs.jpcb.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The properties and formation mechanisms of the triplet state have been widely investigated since they are crucial intermediates in photo functional devices. Specifically, helical PDI dimers, horizontal expanded π-conjugated derivatives of PDI, have shown outstanding performance as electron acceptors in enhancing the performance of photovoltaics. Therefore, the exploration of triplet generation in helical PDI dimers plays a crucial role in understanding the mechanisms and excavating their further application. We make use of Se-annulation to induce intersystem crossing (ISC) in helical PDI dimers and further explore the triplet evolution process systematically as the number of Se atoms increases by transient absorption spectroscopy and the hole-electron analysis method. It shows that the twisted molecular conformation has paved the way for potential ISC in a parent molecule PDI2. The incorporation of Se atoms can result in evident promotion in the efficiency of ISC (ϕTPDI2-2Se = 96.9%) compared to the parent molecule PDI2 (ϕTPDI2 = 26.5%), indicating that chalcogen-annulation is also an efficient strategy in a π-extended system. Our results provide useful insights for understanding the triplet evolution process, which can help broaden the application of the π-extended PDI system into high-performance photovoltaics.
Collapse
Affiliation(s)
- Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoqi Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
29
|
Zhao J, Xu J, Huang H, Wang K, Wu D, Jasti R, Xia J. Appending Coronene Diimide with Carbon Nanohoops Allows for Rapid Intersystem Crossing in Neat Film. Angew Chem Int Ed Engl 2024; 63:e202400941. [PMID: 38458974 DOI: 10.1002/anie.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor-acceptor type of conjugated macrocycle (CDI-CPP) featuring intramolecular charge-transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X-ray crystallography. Transient spectroscopy studies showed that CDI-CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra- and intermolecular charge-transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Huaxi Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, 97403, Eugene, Oregon, USA
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| |
Collapse
|
30
|
Deng Z, Zhang J, Zhou J, Shen W, Zuo Y, Wang J, Yang S, Liu J, Chen Y, Chen CC, Jia G, Alam P, Lam JWY, Tang BZ. Dynamic Transition between Monomer and Excimer Phosphorescence in Organic Near-Infrared Phosphorescent Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311384. [PMID: 38178607 DOI: 10.1002/adma.202311384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Achieving efficient near-infrared room-temperature phosphorescence of purely organic phosphors remains scarce and challenging due to strong nonradiative decay. Additionally, the investigation of triplet excimer phosphorescence is rarely reported, despite the fact that excimer, a special emitter commonly formed in crystals with strong π-π interactions, can efficiently change the fluorescent properties of compounds. Herein, a series of dithienopyrrole derivatives with low triplet energy levels and stable triplet states, exhibiting persistent near-infrared room-temperature phosphorescence, is developed. Via the modification of halogen atoms, the crystals display tunable emissions of monomers from 645 to 702 nm, with a maximum lifetime of 3.68 ms under ambient conditions. Notably, excimer phosphorescence can be switched on at low temperatures, enabled by noncovalent interactions rigidifying the matrix and stabilizing triplet excimer. Unprecedentedly, the dynamic transition process is captured between the monomer and excimer phosphorescence with temperature variations, revealing that the unstable triplet excimers in crystals with a tendency to dissociate can result in the effective quench of room-temperature phosphorescence. Excited state transitions across varying environments are elucidated, interpreting the structural dynamics of the triplet excimer and demonstrating strategies for devising novel near-infrared phosphors.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianyu Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiaming Zhou
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wei Shen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunfei Zuo
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jin Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengyi Yang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junkai Liu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuyang Chen
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guocheng Jia
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| | - Jacky W Y Lam
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Science and Engineering, Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
31
|
Tedy AM, Manna AK. Nature and energetics of low-lying excited singlets/triplets and intersystem crossing rates in selone analogs of perylenediimide: A theoretical perspective. J Chem Phys 2024; 160:114306. [PMID: 38497472 DOI: 10.1063/5.0200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The structural rigidity and chemical diversity of the highly fluorescent perylenediimide (PDI) provide wide opportunities for developing triplet photosensitizers with sufficiently increased energy efficiency. Remarkably high intersystem crossing (ISC) rates with a complete fluorescence turn-off reported recently for several thione analogs of PDI due to substantially large spin-orbit coupling garners huge attention to develop other potential analogs. Here, several selone analogs of PDI, denoted as mSe-PDIs (m = 1-4) with varied Se content and positions, are investigated to provide a comprehensive and comparative picture down the group-16 using density functional theory (DFT) and time-dependent DFT implementing optimally tuned range-separated hybrid in toluene dielectric. All mSe-PDIs are confirmed to be dynamically stable and also thermodynamically feasible to synthesize from their oxygen and thione congeners. The first excited-state singlet (S1) of mSe-PDI with relatively low Se-content (m = 1, 2) is of nπ* character with an expected fluorescence turn-off. Whereas, the ππ* nature of the S1 for 3Se-PDI and 4Se-PDI suggests a possible fluorescence turn-on in the absence of any other active nonradiative deactivation pathways. However, ∼4-6 orders greater ISC rates (∼1012-1014 s-1) than the fluorescence ones (∼108 s-1) for all mSe-PDIs signify highly efficient triplet harvest. Importantly, significantly higher ISC rates for these mSe-PDIs than their thione congeners render them efficient triplet photosensitizers.
Collapse
Affiliation(s)
- Annette Mariya Tedy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| |
Collapse
|
32
|
Kato K, Teki Y. Theoretical investigation of multi-spin excited states of anthracene radical-linked π-conjugated spin systems by computational chemistry. Phys Chem Chem Phys 2024; 26:8106-8114. [PMID: 38407399 DOI: 10.1039/d3cp06335f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Multi-spin excited states of chromophore radical-linked π-conjugated spin systems are investigated by molecular orbital calculations based on density functional theory (DFT). The investigated systems consist of an anthracene photosensitive unit leading to a triplet-excited-state (S = 1), π-conjugated linker to propagate spin exchange-coupling, and stable organic radical with a doublet-ground-state (S = 1/2). The intramolecular exchange coupling (JDQ), g value, and fine-structure interaction of their excited states depended on the π-conjugation network (π-topology), type of radical, and molecular structure of the π-linker (length and dihedral angle). The exchange interaction was dependent on the π-topology and the type of radical species. A decrease in the dihedral angle between the anthracene moiety and phenyl linker in the photo-excited state led to larger exchange coupling. With an increase in the π-linker length (r), the magnitude of the exchange coupling gradually decreased in the photoexcited states according to JDQ = JEx0 exp(-βr), similar to the ground-state exchange. The g values of the quartet (Q) state depended only on the radical type (independent of the linker). Conversely, the fine-structure interaction of the Q state was independent of the radical type and depended on both the linker length and the dihedral angle.
Collapse
Affiliation(s)
- Ken Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Yoshio Teki
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
33
|
Pope T, Eng J, Monkman A, Penfold TJ. Spin-Vibronic Intersystem Crossing and Molecular Packing Effects in Heavy Atom Free Organic Phosphor. J Chem Theory Comput 2024; 20:1337-1346. [PMID: 38272840 PMCID: PMC10867843 DOI: 10.1021/acs.jctc.3c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
We present a detailed investigation into the excited state properties of a planar D3h symmetric azatriangulenetrione, HTANGO, which has received significant interest due to its high solid-state phosphorescence quantum yield and therefore potential as an organic room temperature phosphorescent (ORTP) dye. Using a model linear vibronic coupling Hamiltonian in combination with quantum dynamics simulations, we observe that intersystem crossing (ISC) in HTANGO occurs with a rate of ∼1010 s-1, comparable to benzophenone, an archetypal molecule for fast ISC in heavy metal free molecules. Our simulations demonstrate that the mechanism for fast ISC is associated with the high density of excited triplet states which lie in close proximity to the lowest singlet states, offering multiple channels into the triplet manifold facilitating rapid population transfer. Finally, to rationalize the solid-state emission properties, we use quantum chemistry to investigate the excited state surfaces of the HTANGO dimer, highlighting the influence and importance of the rotational alignment between the two HTANGO molecules in the solid state and how this contributes to high phosphorescence quantum yield.
Collapse
Affiliation(s)
- Thomas Pope
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Julien Eng
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Andrew Monkman
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Thomas J. Penfold
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
34
|
Sun Z, Xu W, Qiu S, Ma Z, Li C, Zhang S, Wang H. Thia[ n]helicenes with long persistent phosphorescence. Chem Sci 2024; 15:1077-1087. [PMID: 38239689 PMCID: PMC10793212 DOI: 10.1039/d3sc05480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Helicenes with persistent luminescence have received relatively little attention, despite their demonstrated highly efficient intersystem crossing (ISC) from the excited singlet to the triplet state. Herein, we designed a series of ortho-fused aromatics by combining dithieno[2,3-b:3',2'-d]thiophene (DTT) with annulated benzene fragments, denoted as TB[n]H (n = 3-8), to achieve persistent luminescence. Wherein, thia[n]helicenes (n = 5-8) exhibited intense phosphorescence with millisecond-range lifetimes (τp) at 77 K. Particularly interesting was the observation that the odd-numbered ring helicenes displayed longer τp values than their neighboring even-numbered counterparts. Notably, TB[7]H showcased the longest τp of 628 ms. This phenomenon can be attributed to the more favorable ISC channels and stronger spin-orbital coupling (SOC) of old-numbered helicenes than even-numbered ones. Furthermore, both conformers of TB[7]H exhibited significant circularly polarized phosphorescent (CPP) responses, with luminescence dissymmetry factors (glum) of 0.015 and -0.014. These discoveries suggest that thiahelicenes may be a specific class of organic phosphorescent and CPP materials.
Collapse
Affiliation(s)
- Zhen Sun
- Institute of Nanoscience and Engineering, Henan University Kaifeng 475004 Henan China
| | - Wan Xu
- Institute of Nanoscience and Engineering, Henan University Kaifeng 475004 Henan China
| | - Shuai Qiu
- Institute of Nanoscience and Engineering, Henan University Kaifeng 475004 Henan China
| | - Zhiying Ma
- Institute of Nanoscience and Engineering, Henan University Kaifeng 475004 Henan China
| | - Chunli Li
- Institute of Nanoscience and Engineering, Henan University Kaifeng 475004 Henan China
| | - Sheng Zhang
- Institute of Nanoscience and Engineering, Henan University Kaifeng 475004 Henan China
| | - Hua Wang
- Institute of Nanoscience and Engineering, Henan University Kaifeng 475004 Henan China
| |
Collapse
|
35
|
Ye Z, Wu H, Xu Y, Hua T, Chen G, Chen Z, Yin X, Huang M, Xu K, Song X, Huang Z, Lv X, Miao J, Cao X, Yang C. Deep-Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High-Performance OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308314. [PMID: 37963185 DOI: 10.1002/adma.202308314] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.
Collapse
Affiliation(s)
- Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiufang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
36
|
Das S, Batra A, Kundu S, Sharma R, Patra A. Unveiling autophagy and aging through time-resolved imaging of lysosomal polarity with a delayed fluorescent emitter. Chem Sci 2023; 15:102-112. [PMID: 38131076 PMCID: PMC10732132 DOI: 10.1039/d3sc02450d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023] Open
Abstract
Detecting the lysosomal microenvironmental changes like viscosity, pH, and polarity during their dynamic interorganelle interactions remains an intriguing area that facilitates the elucidation of cellular homeostasis. The subtle variation of physiological conditions can be assessed by deciphering the lysosomal microenvironments during lysosome-organelle interactions, closely related to autophagic pathways leading to various cellular disorders. Herein, we shed light on the dynamic lysosomal polarity in live cells and a multicellular model organism, Caenorhabditis elegans (C. elegans), through time-resolved imaging employing a thermally activated delayed fluorescent probe, DC-Lyso. The highly photostable and cytocompatible DC-Lyso rapidly labels the lysosomes (within 1 min of incubation) and exhibits red luminescence and polarity-sensitive long lifetime under the cellular environment. The distinct variation in the fluorescence lifetime of DC-Lyso suggests an increase in local polarity during the lysosomal dynamics and interorganelle interactions, including lipophagy and mitophagy. The lifetime imaging analysis reveals increasing lysosomal polarity as an indicator for probing the successive development of C. elegans during aging. The in vivo microsecond timescale imaging of various cancerous cell lines and C. elegans, as presented here, therefore, expands the scope of delayed fluorescent emitters for unveiling complex biological processes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Abhilasha Batra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
37
|
Kalita KJ, Mondal S, Reddy CM, Vijayaraghavan RK. Thermally activated delayed fluorescence in a mechanically soft charge-transfer complex: role of the locally excited state. Chem Sci 2023; 14:13870-13878. [PMID: 38075669 PMCID: PMC10699582 DOI: 10.1039/d3sc03267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 10/16/2024] Open
Abstract
Molecular design for thermally activated delayed fluorescence (TADF) necessitates precise molecular geometric requirements along with definite electronic states to ensure high intersystem crossing (ISC) rate and photoluminescence quantum yield (PLQY). Achieving all these requirements synchronously while maintaining ease of synthesis and scalability is still challenging. To circumvent this, our strategy of combining a crystal engineering approach with basic molecular quantum mechanical principles appears promising. A holistic, non-covalent approach for achieving efficient TADF in crystalline materials with distinct mechanical properties is highlighted here. Charge transfer (CT) co-crystals of two carbazole-derived donors (ETC and DTBC) with an acceptor (TFDCNB) molecule are elaborated as a proof-of-concept. Using temperature-dependent steady-state and time-resolved photoluminescence techniques, we prove the need for a donor-centric triplet state (3LE) to ensure efficient TADF. Such intermediate states guarantee a naturally forbidden, energetically uphill reverse intersystem crossing (RISC) process, which is paramount for effective TADF. A unique single-crystal packing feature with isolated D-A-D trimeric units ensured minimal non-radiative exciton loss, leading to a high PLQY and displaying interesting mechanical plastic bending behaviour. Thus, a comprehensive approach involving a non-covalent strategy to circumvent the conflicting requirements of a small effective singlet-triplet energy offset and a high oscillator strength for efficient TADF emitters is achieved here.
Collapse
Affiliation(s)
- Kalyan Jyoti Kalita
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur 741246 India
| |
Collapse
|
38
|
Datta S, Xu J. Recent Advances in Organic Molecular-to-Supramolecular Self-Assembled Room-Temperature Phosphorescent Materials for Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:4572-4585. [PMID: 37883786 DOI: 10.1021/acsabm.3c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
This minireview focuses on recent advancements in organic molecular-to-supramolecular self-assembled room-temperature phosphorescent (RTP) materials and their prospective biomedical applications. RTP materials, having their unique capacity to emit long-lasting phosphorescence at ambient temperature, have piqued researchers' interest in various biological applications, including biosensing, bioimaging, drug delivery, and photodynamic therapy (PDT). These materials have several benefits, including high sensitivity, remarkable photostability, and low cytotoxicity. RTP materials' self-assembly into supramolecular structures improves their performance and broadens their uses. Researchers have built organic RTP systems with long-lasting phosphorescence by leveraging weak noncovalent interactions in aquatic conditions. These materials have demonstrated incredible promise as biosensors that enable sensitive analyte detection and as photosensitizers in PDT that target and sensitize specific cell types. The review also outlines future directions and challenges in developing and utilizing pure organic RTP materials for biological imaging purposes, providing valuable guidelines for their future design and application.
Collapse
Affiliation(s)
- Saptarshi Datta
- Department of Chemistry and Biochemistry, University of Missouri─St. Louis (UMSL), St. Louis, Missouri 63121, United States
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri─St. Louis (UMSL), St. Louis, Missouri 63121, United States
| |
Collapse
|
39
|
Usui K, Amano A, Murayama K, Sasaya M, Kusumoto R, Umeno T, Murase S, Iizuka N, Matsumoto S, Fuchi Y, Takahashi K, Kawahata M, Kobori Y, Karasawa S. Photoisomerization of "Partially Embedded Dihydropyridazine" with a Helical Structure. Chemistry 2023; 29:e202302413. [PMID: 37612241 DOI: 10.1002/chem.202302413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the synthesis of two "partially embedded fused-dihydropyridazine N-aryl aza[5]helicene derivatives" (PDHs) and the demonstration of their intrinsic photo-triggered multi-functional properties based on a Kekulé biradical structure. Introducing bulky electron-withdrawing trifluoromethyl or pentafluoroethyl groups into the aza[5]helicene framework (PDH-CF3 and -C2 F5 ) gives PDH axial chirality based on the helicity of the P and M forms, even at room temperature. Upon photo-irradiation of PDH-CF3 in a frozen solution, an ESR signal from the triplet biradical with zero-field splitting values, generated by N-N bond dissociation, was observed. However, when the irradiation was turned off, the ESR signal became silent, thus indicating the existence of two equilibria: between the biradical and quinoidal forms based on the Kekulé structure, and between N-N bond cleavage and recombination. The observed photo- and thermally induced behaviors indicate that T-type photochromic molecules are involved in the photoisomerization mechanism involving the two equilibria. Inspired by the photoisomerization, chirality control of PDH by photoracemization was achieved. Multiple functionalities, such as T-type photochromism, photo-excitation-mediated triplet biradical formation, and photoracemization, which are attributed to the "partially embedded dihydropyridazine" structure, are demonstrated.
Collapse
Affiliation(s)
- Kazuteru Usui
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Ami Amano
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kasumi Murayama
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Miho Sasaya
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Ryota Kusumoto
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Satsuki Murase
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Naoko Iizuka
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kazuyuki Takahashi
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
- Molecular Photoscience Research Center, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|
40
|
Sunny J, Sebastian E, Sujilkumar S, Würthner F, Engels B, Hariharan M. Unveiling the intersystem crossing dynamics in N-annulated perylene bisimides. Phys Chem Chem Phys 2023; 25:28428-28436. [PMID: 37843851 DOI: 10.1039/d3cp03888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The efficient population of the triplet excited states in heavy metal-free organic chromophores has been one of the long-standing research problems to molecular photochemists. The negligible spin-orbit coupling matrix elements in the purely organic chromophores and the large singlet-triplet energy gap (ΔES-T) pose a hurdle for ultrafast intersystem crossing (ISC). Herein we report the unprecedented population of triplet manifold in a series of nitrogen-annulated perylene bisimide chromophores (NPBI and Br-NPBI). NPBI is found to have a moderate fluorescence quantum yield (Φf = 68 ± 5%), whereas Br-NPBI showcased a low fluorescence quantum yield (Φf = 2.0 ± 0.6%) in toluene. The femtosecond transient absorption measurements of Br-NPBI revealed ultrafast ISC (kISC = 1.97 × 1010 s-1) from the initially populated singlet excited state to the long-lived triplet excited states. The triplet quantum yields (ΦT = 95.2 ± 4.6% for Br-NPBI, ΦT = 18.7 ± 2.3% for NPBI) calculated from nanosecond transient absorption spectroscopy measurements showed the enhancement in triplet population upon bromine substitution. The quantum chemical calculations revealed the explicit role of nitrogen annulation in tuning the excited state energy levels to favor the ISC. The near degeneracy between the singlet and triplet excited states observed in NPBI and Br-NPBI (ΔES-T = -0.01 eV for NPBI, ΔES-T = 0.03 eV for Br-NPBI) facilitates the spin flipping in the molecules. Nitrogen annulation emerges as a design strategy to open up the ISC pathway and the rate of which can be further enhanced by the substitution of a heavier element.
Collapse
Affiliation(s)
- Jeswin Sunny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Suvarna Sujilkumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
41
|
Pfund B, Hutskalova V, Sparr C, Wenger OS. Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion. Chem Sci 2023; 14:11180-11191. [PMID: 37860649 PMCID: PMC10583676 DOI: 10.1039/d3sc02768f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Metal-based photosensitizers commonly undergo quantitative intersystem crossing into photoactive triplet excited states. In contrast, organic photosensitizers often feature weak spin-orbit coupling and low intersystem crossing efficiencies, leading to photoactive singlet excited states. By modifying the well-known acridinium dyes, we obtained a new family of organic photocatalysts, the isoacridones, in which both singlet- and triplet-excited states are simultaneously photoactive. These new isoacridone dyes are synthetically readily accessible and show intersystem crossing efficiencies of up to 52%, forming microsecond-lived triplet excited states (T1), storing approximately 1.9 eV of energy. Their photoactive singlet excited states (S1) populated in parallel have only nanosecond lifetimes, but store ∼0.4 eV more energy and act as strong oxidants. Consequently, the new isoacridone dyes are well suited for applications requiring parallel triplet-triplet energy transfer and photoinduced electron transfer elementary steps, which have become increasingly important in modern photocatalysis. In proof-of-principle experiments, the isoacridone dyes were employed for Birch-type arene reductions and C-C couplings via sensitization-initiated electron transfer, substituting the commonly used iridium or ruthenium based photocatalysts. Further, in combination with a pyrene-based annihilator, sensitized triplet-triplet annihilation upconversion was achieved in an all-organic system, where the upconversion quantum yield correlated with the intersystem crossing quantum yield of the photosensitizer. This work seems relevant in the greater contexts of developing new applications that utilize biphotonic photophysical and photochemical behavior within metal-free systems.
Collapse
Affiliation(s)
- Björn Pfund
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Valeriia Hutskalova
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
42
|
Nag P, Babu P M J, Vennapusa SR. Significance of Nonadiabatic Effects on Efficient Triplet Generation in Lumazines. J Phys Chem A 2023; 127:7739-7746. [PMID: 37677159 DOI: 10.1021/acs.jpca.3c04121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The photophysics of lumazines leading to triplet formation and the effect of thionation are explored in the presence of near-degenerate electronic states. Wave packet simulations are performed on model potential energy surfaces to understand the nonadiabatic population transfer among close-lying excited states. Ultrafast population transfer among singlets opens up new intersystem crossing channels from the higher states. An increased spin-orbit coupling strength originating from thionation enhances intersystem crossing and populates the higher triplets first. The rapid internal conversion in the triplet manifold eventually brings the molecules to their respective low-lying long-lived triplet state.
Collapse
Affiliation(s)
- Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Janaarthana Babu P M
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
43
|
Wang Z, Ma L, Zhao H, Wan Y, Zhang XF, Li Y, Kuang Z, Xia A. Spin-orbit charge-transfer intersystem crossing in heavy-atom-free orthogonal covalent boron-dipyrromethene heterodimers. Phys Chem Chem Phys 2023; 25:24386-24394. [PMID: 37283300 DOI: 10.1039/d3cp01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Boron-dipyrromethene (BODIPY) derivatives are prospective organic-based triplet photosensitizers. Since the triplet generation yield of the parent BODIPY is low, heavy atoms are widely used to improve the triplet yield. However, the dimerization of BODIPYs can also significantly improve their ability to produce triplets. Through a comparative study of the triplet formation dynamics of two heavy-atom-free orthogonal covalent BODIPY heterodimers that differ in their dihedral angles, we have demonstrated that the mechanism of spin-orbit charge-transfer intersystem crossing (SOCT-ISC) promotes the triplet generation of BODIPY heterodimers in solution. Different from the general understanding of SOCT-ISC, the heterodimer with a smaller dihedral angle and low structural rigidity showed better triplet generation due to (a) the stronger inter-chromophoric interaction in the heterodimer, which promoted the formation of a solvent-stabilized charge-transfer (CT) state, (b) the more favorable energy level alignment with sizeable spin-orbit coupling strength, and (c) the balance between the stabilized singlet CT state and limited direct charge recombination to the ground state in a weakly polar solvent. The complete spectral characterization of the triplet formation dynamics clarified the SOCT-ISC mechanism and important factors affecting the triplet generation in BODIPY heterodimers.
Collapse
Affiliation(s)
- Zeming Wang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.
| | - Lin Ma
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.
| | - Hongmei Zhao
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, P. R. China.
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.
| |
Collapse
|
44
|
Zhou X, Shi C, Long S, Yao Q, Ma H, Chen K, Du J, Sun W, Fan J, Liu B, Wang L, Chen X, Sui L, Yuan K, Peng X. Highly Efficient Photosensitizers with Molecular Vibrational Torsion for Cancer Photodynamic Therapy. ACS CENTRAL SCIENCE 2023; 9:1679-1691. [PMID: 37637741 PMCID: PMC10451034 DOI: 10.1021/acscentsci.3c00611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/29/2023]
Abstract
The development of highly effective photosensitizers (PSs) for photodynamic therapy remains a great challenge at present. Most PSs rely on the heavy-atom effect or the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) effect to promote ISC, which brings about additional cytotoxicity, and the latter is susceptible to the interference of solvent environment. Herein, an immanent universal property named photoinduced molecular vibrational torsion (PVT)-enhanced spin-orbit coupling (PVT-SOC) in PSs has been first revealed. PVT is verified to be a widespread intrinsic property of quinoid cyanine (QCy) dyes that occurs on an extremely short time scale (10-10 s) and can be captured by transient spectra. The PVT property can provide reinforced SOC as the occurrence of ISC predicted by the El Sayed rules (1ππ*-3nπ*), which ensures efficient photosensitization ability for QCy dyes. Hence, QTCy7-Ac exhibited the highest singlet oxygen yield (13-fold higher than that of TCy7) and lossless fluorescence quantum yield (ΦF) under near-infrared (NIR) irradiation. The preeminent photochemical properties accompanied by high biosecurity enable it to effectively perform photoablation in solid tumors. The revelation of this property supplies a new route for constructing high-performance PSs for achieving enhanced cancer phototherapy.
Collapse
Affiliation(s)
- Xiao Zhou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chao Shi
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Saran Long
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Qichao Yao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - He Ma
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Kele Chen
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Bin Liu
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Wang
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoqiang Chen
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Laizhi Sui
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
45
|
Hojo R, Bergmann K, Elgadi SA, Mayder DM, Emmanuel MA, Oderinde MS, Hudson ZM. Imidazophenothiazine-Based Thermally Activated Delayed Fluorescence Materials with Ultra-Long-Lived Excited States for Energy Transfer Photocatalysis. J Am Chem Soc 2023; 145:18366-18381. [PMID: 37556344 DOI: 10.1021/jacs.3c04132] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Triplet-triplet energy transfer (EnT) is a powerful activation pathway in photocatalysis that unlocks new organic transformations and improves the sustainability of organic synthesis. Many current examples, however, still rely on platinum-group metal complexes as photosensitizers, with associated high costs and environmental impacts. Photosensitizers that exhibit thermally activated delayed fluorescence (TADF) are attractive fully organic alternatives in EnT photocatalysis. However, TADF photocatalysts incorporating heavy atoms remain rare, despite their utility in inducing efficient spin-orbit-coupling, intersystem-crossing, and consequently a high triplet population. Here, we describe the synthesis of imidazo-phenothiazine (IPTZ), a sulfur-containing heterocycle with a locked planar structure and a shallow LUMO level. This acceptor is used to prepare seven TADF-active photocatalysts with triplet energies up to 63.9 kcal mol-1. We show that sulfur incorporation improves spin-orbit coupling and increases triplet lifetimes up to 3.64 ms, while also allowing for tuning of photophysical properties via oxidation at the sulfur atom. These IPTZ materials are applied as photocatalysts in five seminal EnT reactions: [2 + 2] cycloaddition, the disulfide-ene reaction, and Ni-mediated C-O and C-N cross-coupling to afford etherification, esterification, and amination products, outcompeting the industry-standard TADF photocatalyst 2CzPN in four of the five studied scenarios. Detailed photophysical and theoretical studies are used to understand structure-activity relationships and to demonstrate the key role of the heavy atom effect in the design of TADF materials with superior photocatalytic performance.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seja A Elgadi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
46
|
Lu B, Quan H, Zhang Z, Li T, Wang J, Ding Y, Wang Y, Zhan X, Yao Y. End Group Nonplanarization Enhances Phototherapy Efficacy of A-D-A Fused-Ring Photosensitizer for Tumor Phototherapy. NANO LETTERS 2023; 23:2831-2838. [PMID: 36897125 DOI: 10.1021/acs.nanolett.3c00119] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enhancing the phototherapy efficacy of organic photosensitizers through molecular design is a fascinating but challenging task. Herein, we propose a simple design strategy to first realize the generation of superoxide anion radical (O2•-) by A-D-A fused-ring photosensitizers. Through replacing one cyano group of traditional end group with an ester group, we designed a novel nonplanar end group (A unit) to synthesize a novel A-D-A photosensitizer F8CA. In a comparison with its counterpart F8CN with the traditional end group, F8CA displays more loose packing and larger spin-orbit coupling constants. The F8CA nanoparticles showed higher photodynamic activities with the generation capability of singlet oxygen (1O2), hydroxyl radical (•OH), and O2•-, while F8CN nanoparticles could only generate 1O2 and •OH. In addition, F8CA nanoparticles still remain high photothermal conversion efficiency (61%). As a result, F8CA nanoparticles perform well in hypoxia-tolerant tumor phototherapy. This study brings an effective design thought for A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Tengfei Li
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
47
|
Tang N, Zhou J, Wang L, Stolte M, Xie G, Wen X, Liu L, Würthner F, Gierschner J, Xie Z. Anomalous deep-red luminescence of perylene black analogues with strong π-π interactions. Nat Commun 2023; 14:1922. [PMID: 37024474 PMCID: PMC10079835 DOI: 10.1038/s41467-023-37171-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Perylene bisimide (PBI) dyes are known as red, maroon and black pigments, whose colors depend on the close π-π stacking arrangement. However, contrary to the luminescent monomers, deep-red and black PBI pigments are commonly non- or only weakly fluorescent due to (multiple) quenching pathways. Here, we introduce N-alkoxybenzyl substituted PBIs that contain close π stacking arrangement (exhibiting dπ-π ≈ 3.5 Å, and longitudinal and transversal displacements of 3.1 Å and 1.3 Å); however, they afford deep-red emitters with solid-state fluorescence quantum yields (ΦF) of up to 60%. Systematic photophysical and computational studies in solution and in the solid state reveal a sensitive interconversion of the PBI-centred locally excited state and a charge transfer state, which depends on the dihedral angle (θ) between the benzyl and alkoxy groups. This effectively controls the emission process, and enables high ΦF by circumventing the common quenching pathways commonly observed for perylene black analogues.
Collapse
Affiliation(s)
- Ningning Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Matthias Stolte
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xinbo Wen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain.
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| |
Collapse
|
48
|
Liu Y, Gu M, Ding Q, Zhang Z, Gong W, Yuan Y, Miao X, Ma H, Hong X, Hu W, Xiao Y. Highly Twisted Conformation Thiopyrylium Photosensitizers for In Vivo Near Infrared-II Imaging and Rapid Inactivation of Coronavirus. Angew Chem Int Ed Engl 2023; 62:e202214875. [PMID: 36545827 PMCID: PMC9880658 DOI: 10.1002/anie.202214875] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Despite significant effort, a majority of heavy-atom-free photosensitizers have short excitation wavelengths, thereby hampering their biomedical applications. Here, we present a facile approach for developing efficient near-infrared (NIR) heavy-atom-free photosensitizers. Based on a series of thiopyrylium-based NIR-II (1000-1700 nm) dyads, we found that the star dyad HD with a sterically bulky and electron-rich moiety exhibited configuration torsion and significantly enhanced intersystem crossing (ISC) compared to the parent dyad. The electron excitation characteristics of HD changed from local excitation (LE) to charge transfer (CT)-domain, contributing to a ≈6-fold reduction in energy gap (ΔEST ), a ≈10-fold accelerated ISC process, and a ≈31.49-fold elevated reactive oxygen species (ROS) quantum yield. The optimized SP@HD-PEG2K lung-targeting dots enabled real-time NIR-II lung imaging, which precisely guided rapid pulmonary coronavirus inactivation.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Meijia Gu
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Qihang Ding
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Zhiyun Zhang
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Wanxia Gong
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Jiangxi Key Laboratory of Organo-Pharmaceutical ChemistryChemistry and Chemical Engineering CollegeGannan Normal UniversityGanzhouJiangxi 341000P. R. China
- Shenzhen Institute of Wuhan UniversityShenzhen518057China
| | - Yuncong Yuan
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Xiaofei Miao
- Frontiers Science Center for Flexible Electronicsand Xi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)Nanjing211816China
| | - Xuechuan Hong
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Jiangxi Key Laboratory of Organo-Pharmaceutical ChemistryChemistry and Chemical Engineering CollegeGannan Normal UniversityGanzhouJiangxi 341000P. R. China
- Shenzhen Institute of Wuhan UniversityShenzhen518057China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronicsand Xi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
| | - Yuling Xiao
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| |
Collapse
|
49
|
Sebastian E, Hariharan M. A Symmetry-Broken Charge-Separated State in the Marcus Inverted Region. Angew Chem Int Ed Engl 2023; 62:e202216482. [PMID: 36697363 DOI: 10.1002/anie.202216482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
We report a long-lived charge-separated state in a chromophoric pair (DC-PDI2 ) that uniquely integrates the advantages of fundamental processes of photosynthetic reaction centers: i) Symmetry-breaking charge-separation (SB-CS) and ii) Marcus-inverted-region dependence. The near-orthogonal bichromophoric DC-PDI2 manifests an ultrafast evolution of the SB-CS state with a time constant of τ S B - C S ${{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ =0.35±0.02 ps and a slow charge recombination (CR) kinetics with τ C R ${{\tau }_{{\rm C}{\rm R}}}$ =4.09±0.01 ns in ACN. The rate constant of CR of DC-PDI2 is 11 686 times slower than SB-CS in ACN, as the CR of the PDI radical ion-pair occurs in the deep inverted region of the Marcus parabola ( - Δ G C R ${{-{\rm \Delta }G}_{{\rm C}{\rm R}}}$ >λ). In contrast, an analogous benzyloxy (BnO)-substituted DC-BPDI2 showcases a ≈10-fold accelerated CR kinetics with τ C R / τ S B - C S ${{\tau }_{{\rm C}{\rm R}}/{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ lowering to ≈1536 in ACN, by virtue of a decreased CR driving force. The present investigation demonstrates a control of molecular engineering to tune the energetics and kinetics of the SB-CS material, which is essential for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| |
Collapse
|
50
|
Understanding pH Tailored Photophysical Properties of a $${\varvec{\pi}}$$-Conjugated Aryl Hydrazone-Derived Dye for Sensing Application. J CHEM SCI 2023. [DOI: 10.1007/s12039-022-02129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|