1
|
Zhang B, Qie J, You J, Gao X, Li Y, Wang W. Multifunctional Composite Separator Based on NiS 2/NiSe 2 Homologous Heterostructure Polyhedron Promotes Polysulfide Conversion for High Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39483066 DOI: 10.1021/acsami.4c13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The shuttle effect significantly hinders the industrialization of high-energy-density lithium-sulfur batteries. To address this issue, NiS2/NiSe2 homologous heterostructure polyhedron (HHP) composite separators were developed to immobilize polysulfides and promote their swift conversion. An in-situ visualization symmetrical cell was specifically designed to show the rapid polysulfide adsorption capability of NiS2/NiSe2 HHP, while the electrolyte-separator interfacial contact behavior was simulated to elucidate the mechanism of action of the composite separator in affecting the homogeneous nucleation of lithium metal surfaces. The electrochemical experimental result highlights the substantial enhancement in the reaction kinetics of polysulfides facilitated by NiS2/NiSe2 HHP, owing to its high Li+ diffusion coefficient and Li2S deposition capacity. The NiS2/NiSe2 HHP cells demonstrate high initial specific capacity (1224.1 mAh g-1) at 0.2 C and minimal decay rates (0.073%) at 2 C. The NiS2/NiSe2 HHP separator has high electrochemical catalytic activity with multiple adsorption sites, enabling the rapid polysulfide conversion and contributing to the preparation of high-performance lithium-sulfur batteries.
Collapse
Affiliation(s)
- Bo Zhang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaxin Qie
- Hohhot No. 2 High School, Hohhot, Inner Mongolia 010090, China
| | - Jiyuan You
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaotong Gao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqian Li
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39484694 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
3
|
Xie H, Zhang Y, Liu P, Duo X, Hu Z, Yu J, Wang Z, Yao G, Feng L, Huang X, Ouyang R, Wang Y. Rb-Doped Perovskite Oxides: Surface Enrichment and Structural Reconstruction During the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400668. [PMID: 38881363 DOI: 10.1002/smll.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Alkali-metal doped perovskite oxides have emerged as promising materials due to their unique properties and broad applications in various fields, including photovoltaics and catalysis. Understanding the complex interplay between alkali metal doping, structural modifications, and their impact on performance remains a crucial challenge. In this study, this challenge is addressed by investigating the synthesis and properties of Rb-doped perovskite oxides. These results reveal that the doping of Rb into perovskite oxides function as a structural modifier in the as-synthesized samples and during the oxygen evolution reaction (OER) as well. Electron microscopy and first-principles calculations confirm the enrichment of Rb on the surface of the as-synthesized sample. Further investigations into the electrocatalytic reaction revealed that the Rb-doped perovskite underwent drastic restructuring with Rb leaching and formation of strontium oxide.
Collapse
Affiliation(s)
- Huachao Xie
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuxuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Panpan Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Xuyao Duo
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhonghui Hu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Jia Yu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zihan Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Guodong Yao
- State Key, Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Xing Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Runhai Ouyang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuanqing Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Wang Y, Arandiyan H, Mofarah SS, Shen X, Bartlett SA, Koshy P, Sorrell CC, Sun H, Pozo-Gonzalo C, Dastafkan K, Britto S, Bhargava SK, Zhao C. Stacking Fault-Enriched MoNi 4/MoO 2 Enables High-Performance Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402156. [PMID: 38869191 DOI: 10.1002/adma.202402156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Xiangjian Shen
- Engineering Research Centre of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stuart A Bartlett
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Cristina Pozo-Gonzalo
- Institute for Frontier Materials, Deakin University, Melbourne, VIC, 3125, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sylvia Britto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Suresh K Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Wang C, Xie Z, Wang Y, Ding Y, Leung MKH, Ng YH. Defects of Metal Halide Perovskites in Photocatalytic Energy Conversion: Friend or Foe? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402471. [PMID: 38828743 PMCID: PMC11304286 DOI: 10.1002/advs.202402471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Photocatalytic solar-to-fuel conversion over metal halide perovskites (MHPs) has recently attracted much attention, while the roles of defects in MHPs are still under debate. Specifically, the mainstream viewpoint is that the defects are detrimental to photocatalytic performance, while some recent studies show that certain types of defects contribute to photoactivity enhancement. However, a systematic summary of why it is contradictory and how the defects in MHPs affect photocatalytic performance is still lacking. In this review, the innovative roles of defects in MHP photocatalysts are highlighted. First, the origins of defects in MHPs are elaborated, followed by clarifying certain benefits of defects in photocatalysts including optical absorption, charge dynamics, and surface reaction. Afterward, the recent progress on defect-related MHP photocatalysis, i.e., CO2 reduction, H2 generation, pollutant degradation, and organic synthesis is systematically discussed and critically appraised, putting emphasis on their beneficial effects. With defects offering peculiar sets of merits and demerits, the personal opinion on the ongoing challenges is concluded and outlining potentially promising opportunities for engineering defects on MHP photocatalysts. This critical review is anticipated to offer a better understanding of the MHP defects and spur some inspiration for designing efficient MHP photocatalysts.
Collapse
Affiliation(s)
- Chunhua Wang
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Zhirun Xie
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yannan Wang
- Department of Materials EngineeringKU LeuvenKasteelpark Arenberg 44Leuven3001Belgium
| | - Yang Ding
- College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhou310018China
| | - Michael K. H. Leung
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| | - Yun Hau Ng
- School of Energy and EnvironmentCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077China
| |
Collapse
|
6
|
Li K, Xia T, Deng R, Dou Y, Wang J, Li Q, Sun L, Huo L, Zhao H. Tuning A-Site Cation Deficiency in Pr 0.5La 0.5BaCo 2O 5+ δ Perovskite to Realize Large-Scale Hydrogen Evolution at 2000 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400760. [PMID: 38566543 DOI: 10.1002/smll.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Industrial-level hydrogen production from the water electrolysis requires reducing the overpotential (η) as much as possible at high current density, which is closely related to intrinsic activity of the electrocatalysts. Herein, A-site cation deficiency engineering is proposed to screen high-performance catalysts, demonstrating effective Pr0.5- xLa0.5BaCo2O5+ δ (P0.5- xLBC) perovskites toward alkaline hydrogen evolution reaction (HER). Among all perovskite compositions, Pr0.4La0.5BaCo2O5+ δ (P0.4LBC) exhibits superior HER performance along with unique operating stability at large current densities (J = 500-2000 mA cm-2 geo). The overpotential of ≈636 mV is achieved in P0.4LBC at 2000 mA cm-2 geo, which outperforms commercial Pt/C benchmark (≈974 mV). Furthermore, the Tafel slope of P0.4LBC (34.1 mV dec-1) is close to that of Pt/C (35.6 mV dec-1), reflecting fast HER kinetics on the P0.4LBC catalyst. Combined with experimental and theoretical results, such catalytic activity may benefit from enhanced electrical conductivity, enlarged Co-O covalency, and decreased desorption energy of H* species. This results highlight effective A-site cation-deficient strategy for promoting electrochemical properties of perovskites, highlighting potential water electrolysis at ampere-level current density.
Collapse
Affiliation(s)
- Kaiqian Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Tian Xia
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yingnan Dou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jingping Wang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qiang Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Liping Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
7
|
Tang T, Tang Y. First-principles investigations of Fe-based A 3BX ceramics with high stiffness and damage tolerance. Phys Chem Chem Phys 2024. [PMID: 39034842 DOI: 10.1039/d4cp01244e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the search for high-stiffness and damage-tolerant materials, Fe-based A3BX carbide and nitride anti-perovskites were studied using first-principles calculations. These perovskites were found to be stable in cubic structures, as substantiated by the formation energy, elastic Born stability criterion, and phonon dispersion spectrum analysis. The GGA functional was applied for geometry optimization, and the lattice constants are found to be 3.730 Å, 3.715 Å, 3.832 Å, and 3.828 Å for Fe3AlC, Fe3AlN, Fe3SnC, and Fe3SnN, respectively. Elastic property analysis reveals that all the materials have large elastic moduli, high sound velocities, and high Debye temperatures. Among them, carbides have superior stiffness and quasi-ductile properties, and they can be further improved by applying additional pressure. Preliminary analysis of electronic properties indicates that they are ferromagnetic and metallic compounds. Their high melting temperatures (>2600 K) confirm their potential in high-temperature applications. The lowest thermal conductivity of Fe3SnN suggests its potential in efficient solid-state refrigeration application. Moreover, Fe3SnC is proposed to be a viable damage-tolerant material with good prospects. Under 10 GPa external pressure, it possesses a ductile structure with a Young's modulus of 402.15 GPa and bulk modulus of 280.25 GPa.
Collapse
Affiliation(s)
- Tianyu Tang
- School of Physics, Guizhou University, Guiyang 550025, China.
| | - Yanlin Tang
- School of Physics, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
8
|
Ghosh B, Zhang C, Frick S, Cho EJ, Woods T, Yang Y, Perry NH, Klein A, Yang H. Defect Engineering in Composition and Valence Band Center of Y 2(Y xRu 1-x) 2O 7-δ Pyrochlore Electrocatalysts for Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:18524-18534. [PMID: 38820244 DOI: 10.1021/jacs.4c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Oxygen evolution reaction (OER) takes place in various types of electrochemical devices that are pivotal for the conversion and storage of renewable energy. This paper describes a strategy in the design of solid-state structures of OER electrocatalysts through controlling the cation substitution on the active metal site and consequently valence band center position of site-mixed Y2(YxRu1-x)2O7-δ pyrochlore to achieve high catalytic activity. We found that partially replacing the B-site Ru4+ cation with A-site Y3+ in pyrochlore-structured Y2Ru2O7-δ modifies the oxidation state of B-site Ru from 4+ to 5+, as observed by electron paramagnetic resonance (EPR) spectroscopy but does not continuously increase the oxygen vacancy concentration in these oxygen substoichiometric compositions, as quantified by thermogravimetric analysis (TGA) decomposition studies. We found the increased Ru oxidation state leads to a downshift in valence band center. X-ray photoelectron spectroscopy (XPS) analysis was performed to quantitatively determine the optimal band center to be ∼1.27 eV below the Fermi energy level based on the analysis of the valence band edge of these Ru-based Y2(YxRu1-x)2O7-δ OER electrocatalysts. This work highlights that defect engineering can be a practical, effective approach to the optimization of oxidation state and electronic band center for high OER catalytic performance in a quantitative manner.
Collapse
Affiliation(s)
- Bidipta Ghosh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Stefanie Frick
- Department of Electronic Structure of Materials, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Straße 3, Darmstadt, Germany, 64287
| | - En Ju Cho
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Toby Woods
- Center of Research and Educational Support, X-ray Diffraction Laboratory, School of Chemical Sciences, University of Illinois Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yujie Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicola H Perry
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Andreas Klein
- Department of Electronic Structure of Materials, Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Straße 3, Darmstadt, Germany, 64287
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Yang S, Chen XM, Shao T, Wei Z, Chen ZN, Cao R, Cao M. Engineering highly selective CO 2 electroreduction in Cu-based perovskites through A-site cation manipulation. Phys Chem Chem Phys 2024; 26:17769-17776. [PMID: 38873788 DOI: 10.1039/d4cp00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Perovskites exhibit considerable potential as catalysts for various applications, yet their performance modulation in the carbon dioxide reduction reaction (CO2RR) remains underexplored. In this study, we report a strategy to enhance the electrocatalytic carbon dioxide (CO2) reduction activity via Ce-doped La2CuO4 (LCCO) and Sr-doped La2CuO4 (LSCO) perovskite oxides. Specifically, compared to pure phase La2CuO4 (LCO), the Faraday efficiency (FE) for CH4 of LCCO at -1.4 V vs. RHE (reversible hydrogen electrode) is improved from 38.9% to 59.4%, and the FECO2RR of LSCO increased from 68.8% to 85.4%. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy spectra results indicate that the doping of A-site ions promotes the formation of *CHO and *HCOO, which are key intermediates in the production of CH4, compared to the pristine La2CuO4. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and double-layer capacitance (Cdl) outcomes reveal that heteroatom-doped perovskites exhibit more oxygen vacancies and higher electrochemical active surface areas, leading to a significant improvement in the CO2RR performance of the catalysts. This study systematically investigates the effect of A-site ion doping on the catalytic activity center Cu and proposes a strategy to improve the catalytic performance of perovskite oxides.
Collapse
Affiliation(s)
- Shuaibing Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Xiao-Min Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Tao Shao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Zongnan Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minna Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Kajino T, Sugimoto R, Ueda T, Fukuura S, Yumura T, Haneda M, Hosokawa S. Experimental and Computational Insights into the Catalytic Mechanism of Y 1-xBa xCoO 3-δ Perovskite Oxides with a Controlled Crystal Structure. Inorg Chem 2024; 63:10980-10986. [PMID: 38815988 DOI: 10.1021/acs.inorgchem.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The crystal structure of Co-based perovskite oxides (ACoO3) can be controlled by adjusting the A-site elements. In this study, we synthesized Y1-xBaxCoO3-δ (x = 0, 0.5, and 1.0) via a coprecipitation method and investigated their CO oxidation performances. YCoO3 (x = 0; cubic perovskite oxide; Pbnm) shows a higher catalytic performance than Y0.5Ba0.5CoO2.72 (x = 0.5; A-site-ordered double perovskite oxide; P4/nmm), which exhibits high oxygen nonstoichiometric properties, and BaCoO3 (x = 1.0; hexagonal perovskite oxide; P63/mmc), which contains high-valent Co4+ species. To elucidate the reaction mechanism, we conducted isotopic experiments with CO and 18O2. The CO oxidation reaction on YCoO3 proceeds via the Langmuir-Hinshelwood mechanism, which is a surface reaction of CO and O2 gas that does not utilize lattice oxygen. Because of the significantly smaller specific surface area of YCoO3 compared with that of the reference Pt/Al2O3, the bulk features of the crystal structures affect the catalytic reaction. When density functional theory is applied, YCoO3 clearly exhibits semiconducting properties in the ground state with the diamagnetic t2g6eg0 states, which can translate to a magnetic t2g5eg1 configuration upon excitation by a relatively low energy of 0.64 eV. We propose that the unique nature of YCoO3 activates oxygen in the gas phase, thereby enabling the smooth oxidation of CO. This study demonstrates that the bulk properties originating from the crystal structure contribute to the catalytic activity and reaction mechanism.
Collapse
Affiliation(s)
- Takanobu Kajino
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Advanced Research and Innovation Center, Denso Corporation, Nisshin, Aichi 470-0111, Japan
| | - Ryosuke Sugimoto
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Taisei Ueda
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shuta Fukuura
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takashi Yumura
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masaaki Haneda
- Advanced Ceramics Research Center, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu 507-0071, Japan
| | - Saburo Hosokawa
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
11
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Wang Y, Wang T, Arandiyan H, Song G, Sun H, Sabri Y, Zhao C, Shao Z, Kawi S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313378. [PMID: 38340031 DOI: 10.1002/adma.202313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Guoqiang Song
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD, Delft, Netherlands
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
13
|
Hou X, Jiang Y, Wei K, Jiang C, Jen TC, Yao Y, Liu X, Ma J, Irvine JTS. Syngas Production from CO 2 and H 2O via Solid-Oxide Electrolyzer Cells: Fundamentals, Materials, Degradation, Operating Conditions, and Applications. Chem Rev 2024; 124:5119-5166. [PMID: 38619540 DOI: 10.1021/acs.chemrev.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Highly efficient coelectrolysis of CO2/H2O into syngas (a mixture of CO/H2), and subsequent syngas conversion to fuels and value-added chemicals, is one of the most promising alternatives to reach the corner of zero carbon strategy and renewable electricity storage. This research reviews the current state-of-the-art advancements in the coelectrolysis of CO2/H2O in solid oxide electrolyzer cells (SOECs) to produce the important syngas intermediate. The overviews of the latest research on the operating principles and thermodynamic and kinetic models are included for both oxygen-ion- and proton-conducting SOECs. The advanced materials that have recently been developed for both types of SOECs are summarized. It later elucidates the necessity and possibility of regulating the syngas ratios (H2:CO) via changing the operating conditions, including temperature, inlet gas composition, flow rate, applied voltage or current, and pressure. In addition, the sustainability and widespread application of SOEC technology for the conversion of syngas is highlighted. Finally, the challenges and the future research directions in this field are addressed. This review will appeal to scientists working on renewable-energy-conversion technologies, CO2 utilization, and SOEC applications. The implementation of the technologies introduced in this review offers solutions to climate change and renewable-power-storage problems.
Collapse
Affiliation(s)
- Xiangjun Hou
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, P. R. China
- Institute for Catalysis and Energy Solutions, Florida Campus, University of South Africa, Roodepoort 1710, South Africa
| | - Yao Jiang
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, P. R. China
| | - Keyan Wei
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, P. R. China
- Institute for Catalysis and Energy Solutions, Florida Campus, University of South Africa, Roodepoort 1710, South Africa
| | - Cairong Jiang
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, P. R. China
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, Kingsway Campus, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Yali Yao
- Institute for Catalysis and Energy Solutions, Florida Campus, University of South Africa, Roodepoort 1710, South Africa
| | - Xinying Liu
- Institute for Catalysis and Energy Solutions, Florida Campus, University of South Africa, Roodepoort 1710, South Africa
| | - Jianjun Ma
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, P. R. China
| | - John T S Irvine
- School of Chemistry, University of St Andrews, The Purdie Building, St Andrews, Fife, Scotland, KY16 9ST, United Kingdom
| |
Collapse
|
14
|
Fang L, Lu S, Wang S, Yang X, Song C, Yin F, Liu H. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations. Chemistry 2024; 30:e202303249. [PMID: 37997008 DOI: 10.1002/chem.202303249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a "two birds-one stone" method that targets remediation of NO3 --containing sewage and production of valuable NH3. The exploitation of advanced catalysts with high activity, selectivity, and durability is a key issue for the efficient catalytic performance. Among various strategies for catalyst design, defect engineering has gained increasing attention due to its ability to modulate the electronic properties of electrocatalysts and optimize the adsorption energy of reactive species, thereby enhancing the catalytic performance. Despite previous progress, there remains a lack of mechanistic insights into the regulation of catalyst defects for NO3 - reduction. Herein, this review presents insightful understanding of defect engineering for NO3 - reduction, covering its background, definition, classification, construction, and underlying mechanisms. Moreover, the relationships between regulation of catalyst defects and their catalytic activities are illustrated by investigating the properties of electrocatalysts through the analysis of electronic band structure, charge density distribution, and controllable adsorption energy. Furthermore, challenges and perspectives for future development of defects in NO3RR are also discussed, which can help researchers to better understand the defect engineering in catalysts, and also inspire scientists entering into this promising field.
Collapse
Affiliation(s)
- Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| |
Collapse
|
15
|
Yang S, Guo X, Li X, Wu T, Zou L, He Z, Xu Q, Zheng J, Chen L, Wang Q, Xu ZJ. Enhancing Photocatalytic CO 2 Conversion through Oxygen-Vacancy-Mediated Topological Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202317957. [PMID: 38270335 DOI: 10.1002/anie.202317957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Weak adsorption of gas reactants and strong binding of intermediates present a significant challenge for most transition metal oxides, particularly in the realm of CO2 photoreduction. Herein, we demonstrate that the adsorption can be fine-tuned by phase engineering of oxide catalysts. An oxygen vacancy mediated topological phase transition in Ni-Co oxide nanowires, supported on a hierarchical graphene aerogel (GA), is observed from a spinel phase to a rock-salt phase. Such in situ phase transition empowers the Ni-Co oxide catalyst with a strong internal electric field and the attainment of abundant oxygen vacancies. Among a series of catalysts, the in situ transformed spinel/rock-salt heterojunction supported on GA stands out for an exceptional photocatalytic CO2 reduction activity and selectivity, yielding an impressive CO production rate of 12.5 mmol g-1 h-1 and high selectivity of 96.5 %. This remarkable performance is a result of the robust interfacial coupling between two topological phases that optimizes the electronic structures through directional charge transfer across interfaces. The phase transition process induces more Co2+ in octahedral site, which can effectively enhance the Co-O covalency. This synergistic effect balances the surface activation of CO2 molecules and desorption of reaction intermediates, thereby lowering the energetic barrier of the rate-limiting step.
Collapse
Affiliation(s)
- Sudong Yang
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P. R. China
| | - Xu Guo
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiaoning Li
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Tianze Wu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Longhua Zou
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Zhiying He
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qing Xu
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Junjie Zheng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Lin Chen
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qingyuan Wang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P. R. China
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Zhichuan J Xu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Zhang X, Wang Y, Ivasishin OM, Zhang J, Yuan L. Thermally Induced Lattice-Defective Oxygen Breathing in Perovskite-Structure Stannates with High-Contrast Reversible Thermochromism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11665-11677. [PMID: 38407038 DOI: 10.1021/acsami.3c18420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inorganic thermochromic materials exhibit a tunable color gamut and a wide chromatic temperature range, indicating their potential for intelligent adaptive applications in thermal warning, temperature indication, thermal regulation, and interactive light-to-thermal energy conversion. However, most metal-oxide-based thermochromic materials show weak chromaticity adaption with the change of temperature, which needs further understanding of the microscopic principle to clarify the potential route to improve the contrast and identifiability for fabricating better thermochromic materials. Using perovskite-structure (AMO3) alkaline earth metal stannate (Ba1-xSrxSnO3, 0.0 ≤ x ≤ 1.0) as a model system, this paper reports for the first time the mechanism of the properties of thermally induced defect-enhanced charge transfer-type (CTT) thermochromic materials and the strategy for regulating their thermochromic properties by A-site cations. BaSnO3 exhibits continuously reversible thermochromic properties with high contrast from weak light yellow (b* = 11) to strong bright yellow (b* = 58) between room temperature and 550 °C. In-situ high-temperature X-ray diffraction (in-situ XRD), in-situ UV-vis absorption spectroscopy (in-situ UV-vis), thermogravimetric (TG), and electron paramagnetic resonance (EPR) spectra indicate that this excellent thermochromic phenomenon is attributed to the weakening of Sn-O bond hybridization at high temperatures, as well as the formation of a large number of oxygen vacancies at the top of the valence band, and the enhanced charge transfer resulting from the generation of impurity levels in the Sn2+ 5s2 intermediate. Replacing Ba2+ by Sr2+ in Ba1-xSrxSnO3 successfully tuned the thermochromic properties, which is attributed to the Sr2+ doping level-directed oxygen defect concentration and deoxygenation rate. The demonstrated defect-enhanced charge transfer behavior promotes a feasible route for lattice oxygen-mediated thermochromic materials and provides a fundamental relationship between thermally induced defects and colorimetry.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Changchun, 130103, China
| | - Yiwen Wang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Orest M Ivasishin
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Long Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Changchun, 130103, China
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
17
|
Xiao Z, Huang H, Hu S, Weng Z, Huang Y, Du B, Zeng X, Meng Y, Huang C. Bifunctional Square-Planar NiO 4 Coordination of Topotactic LaNiO 2.0 Films for Efficient Oxygen Evolution Reaction. SMALL METHODS 2024; 8:e2300793. [PMID: 38009512 DOI: 10.1002/smtd.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/15/2023] [Indexed: 11/29/2023]
Abstract
The high-efficient and low-cost oxygen evolution reaction (OER) is decisive for applications of oxide catalysts in metal-air batteries, electrolytic cells, and energy-storage technologies. Delicate regulations of active surface and catalytic reaction pathway of oxide materials principally determine thermodynamic energy barrier and kinetic rate during catalytic reactions, and thus have crucial impacts on OER performance. Herein, a synergistic modulation of catalytically active surface and reaction pathway through facile topotactic transformations switching from perovskite (PV) LaNiO3.0 film to infinite-layer (IL) LaNiO2.0 film is demonstrated, which absolutely contributes to improving OER performance. The square-planar NiO4 coordination of IL-LaNiO2.0 brings about more electrochemically active metal (Ni+ ) sites on the film surface. Meanwhile, the oxygen-deficient driven PV- IL topotactic transformations lead to a reaction pathway converted from absorbate evolution mechanism to lattice-oxygen-mediated mechanism (LOM). The non-concerted proton-electron transfer of LOM pathway, evidenced by the pH-dependent OER kinetics, further boosts the OER activity of IL-LaNiO2.0 films. These findings will advance the in-depth understanding of catalytic mechanisms and open new possibilities for developing highly active perovskite-derived oxide catalysts.
Collapse
Affiliation(s)
- Zhifei Xiao
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haoliang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sixia Hu
- Sustech Core Research Facilities, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Zhuanglin Weng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuping Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Du
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Chuanwei Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
18
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
19
|
Li Y, Chen M, Jiang L, Tian D, Li K. Perovskites as oxygen storage materials for chemical looping partial oxidation and reforming of methane. Phys Chem Chem Phys 2024; 26:1516-1540. [PMID: 38174573 DOI: 10.1039/d3cp04626e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The traditional partial oxidation, dry reforming and steam reforming of methane technologies are separated into two reactors for execution by chemical looping technology, which can avoid the defects exposed in the traditional process (avoiding carbon accumulation, reducing costs, etc.). The key to chemical looping technology is to find suitable oxygen carriers (OCs), which can store and release oxygen to form a closed loop in the chemical looping. The purpose of this review is to summarize the current status of perovskite oxides for partial oxidation and reforming of methane in chemical looping, describe the structure, oxygen capacity, oxygen migration rate and common synthesis methods of perovskites in chemical looping. In addition, the effects of impregnation loading, ion doping, and structural morphology on the catalytic conversion of CH4 by perovskite OCs and the reaction mechanism on the OCs are also discussed.
Collapse
Affiliation(s)
- Yuelun Li
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Mingyi Chen
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Lei Jiang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Dong Tian
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
20
|
Lei J, Zhang L, Li M, Liu W, Jin Y, Li B. Surface Oxygen Vacancy-Rich Co 3O 4 Nanowires as an Effective Catalyst of Luminol-H 2O 2 Chemiluminescence for Sensitive Immunoassay. Anal Chem 2023; 95:17937-17944. [PMID: 37991222 DOI: 10.1021/acs.analchem.3c04409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Oxygen vacancy is one intrinsic defect in metal oxide materials. Interestingly, we herein found that the surface oxygen vacancy can significantly enhance the catalytic activity of Co3O4 nanowires in the luminol-H2O2 chemiluminescence (CL) reaction. 0.1 ng/mL Co3O4 nanowires containing 51.3% surface oxygen vacancies possessed ca. 2.5-fold catalytic activity of free Co2+ (the best metal ionic catalyst for the luminol-H2O2 CL reaction). The superior catalytic efficiency is attributed to the enhanced adsorption of H2O2 by surface oxygen vacancies, which in turn accelerates the cleavage of O-O bonds and generates •OH radicals. More importantly, the surface oxygen vacancy-rich Co3O4 nanowires retained about 90% catalytic activity after modification with antibodies. The surface oxygen vacancy-rich Co3O4 nanowires were used to label the secondary antibody, and one sandwich-type CL immunoassay of carcinoembryonic antigen was established. The detection limit was 0.3 ng/mL with a linear range of 1-10 ng/mL. This proof-of-concept work proves that surface oxygen vacancy-rich Co3O4 nanowires are suitable for labeling biomolecules in CL bioanalysis and biosensing.
Collapse
Affiliation(s)
- Jing Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Mei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
21
|
Lu H, Wu D, Gu Y, Sun W, Yang X, Li W, Shuai H, Zhao X. A facile mixed complex synthesis method for perovskite oxides toward electrocatalytic oxygen reduction. Chem Commun (Camb) 2023; 59:14149-14152. [PMID: 37955226 DOI: 10.1039/d3cc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides for the electrocatalytic oxygen reduction reaction (ORR) were synthesized by a facile reaction-EDTA/citric acid mixed complex sol-gel method. The cubic single-phase perovskite structure of the as-prepared oxides is demonstrated using powder X-ray diffraction (XRD). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy/selected area electron diffraction (TEM-SAED), and X-ray photoelectron spectroscopy (XPS) characterizations were also conducted for the perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides. Furthermore, the electrochemical ORR properties of the as-prepared oxides in alkaline media were studied, with the oxides exhibiting good electrocatalytic ORR performance.
Collapse
Affiliation(s)
- Hui Lu
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
- Xinyang Municipal Key Laboratory of Critical Materials for Energy and Green Chemistry Processes (XYU), Xinyang 464000, Henan Province, People's Republic of China
- Henan Provincial Engineering Research Center of Critical Materials for High-performance Green Chemical Engineering and Energy (XYU), Xinyang 464000, Henan Province, People's Republic of China
| | - Danyang Wu
- School of Physics and Electronics Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| | - Yue Gu
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
| | - Wenxin Sun
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
| | - Xiaojian Yang
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
- Xinyang Municipal Key Laboratory of Critical Materials for Energy and Green Chemistry Processes (XYU), Xinyang 464000, Henan Province, People's Republic of China
- Henan Provincial Engineering Research Center of Critical Materials for High-performance Green Chemical Engineering and Energy (XYU), Xinyang 464000, Henan Province, People's Republic of China
| | - Wenxuan Li
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
| | - Honglei Shuai
- School of Science and Technology, Xinyang University, Xinyang 464000, Henan Province, People's Republic of China.
- Henan Provincial Engineering Research Center of Critical Materials for High-performance Green Chemical Engineering and Energy (XYU), Xinyang 464000, Henan Province, People's Republic of China
| | - Xinsheng Zhao
- School of Physics and Electronics Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| |
Collapse
|
22
|
Hu C, Ye D, Ren J, Wu C, Zhao C, Xu W, Zhou H, Yu T, Luo X, Yuan C. Suppressed charge recombination via defect engineering of confined semiconducting quantum dots for photoelectrocatalysis. Chem Commun (Camb) 2023. [PMID: 37999946 DOI: 10.1039/d3cc05231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Confined semiconducting CuSe quantum dots with abundant Se vacancies are synthesized by pulsed laser deposition with in situ vacuum annealing. With the presence of Se vacancies, the photogenerated charge recombination is suppressed by the self-introduced in-gap trapping states, thus enhancing the photoelectrocatalytic activity under solar illumination.
Collapse
Affiliation(s)
- Ce Hu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- Analytical & Testing Center, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Daojian Ye
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Jie Ren
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Congcong Wu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Chenya Zhao
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Weiyang Xu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Hang Zhou
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
- School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| |
Collapse
|
23
|
Ricca C, Skoropata E, Rossell MD, Erni R, Staub U, Aschauer U. Combined Theoretical and Experimental Study of the Moiré Dislocation Network at the SrTiO 3-(La,Sr)(Al,Ta)O 3 Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53678-53687. [PMID: 37945309 PMCID: PMC10685357 DOI: 10.1021/acsami.3c10958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Recently, a highly ordered Moiré dislocation lattice was identified at the interface between a SrTiO3 (STO) thin film and the (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) substrate. A fundamental understanding of the local ionic and electronic structures around the dislocation cores is crucial to further engineer the properties of these complex multifunctional heterostructures. Here, we combine experimental characterization via analytical scanning transmission electron microscopy with results of molecular dynamics and density functional theory calculations to gain insights into the structure and defect chemistry of these dislocation arrays. Our results show that these dislocations lead to undercoordinated Ta/Al cations at the dislocation core, where oxygen vacancies can easily be formed, further facilitated by the presence of cation vacancies. The reduced Ti3+ observed experimentally at the dislocations by electron energy-loss spectroscopy is a consequence of both the structure of the dislocation itself and of the electron doping due to oxygen vacancy formation. Finally, the experimentally observed Ti diffusion into the LSAT around the dislocation core occurs only together with cation vacancy formation in the LSAT or Ta diffusion into STO.
Collapse
Affiliation(s)
- Chiara Ricca
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Elizabeth Skoropata
- Swiss
Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Marta D. Rossell
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Urs Staub
- Swiss
Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Ulrich Aschauer
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Street 2A, A-5020 Salzburg, Austria
| |
Collapse
|
24
|
Bacha AUR, Nabi I, Chen Y, Li Z, Iqbal A, Liu W, Afridi MN, Arifeen A, Jin W, Yang L. Environmental application of perovskite material for organic pollutant-enriched wastewater treatment. Coord Chem Rev 2023; 495:215378. [DOI: 10.1016/j.ccr.2023.215378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
25
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Wang J, Zhao C, Yuan S, Li X, Zhang J, Hu X, Lin H, Wu Y, He Y. One-step fabrication of Cu-doped Bi 2MoO 6 microflower for enhancing performance in photocatalytic nitrogen fixation. J Colloid Interface Sci 2023; 638:427-438. [PMID: 36758255 DOI: 10.1016/j.jcis.2023.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
This study enhances the photocatalytic N2 immobilization performance of Bi2MoO6 through Cu doping. Cu-doped Bi2MoO6 was synthesized via a simple solvothermal method. Various characterizations were implemented to examine the influence of Cu doping on the properties of Bi2MoO6. Results indicated that the doped Cu element had a valence state of + 2 and substituted the position of Bi3+. Cu doping exerted minimal effect on the morphology of Bi2MoO6 but largely influenced the energy band structure. The band gap was slightly narrowed, and the conduction band was raised, such that Cu-doped Bi2MoO6 could generate more electrons with stronger reducibility. Moreover, importantly, Cu doping reduced work function and improved charge separation efficiency, which was considered the major cause of enhanced photoactivity. In addition, the Cu-Bi2MoO6 catalyst exhibited higher capability in the adsorption and activation of N2. Under the combined effects of the aforementioned changes, Cu-Bi2MoO6 demonstrated considerably higher photocatalytic efficiency than Bi2MoO6. The optimized NH3 generation rate reached 302 μmol/L g-1h-1 and 157 μmol/L g-1h-1 under simulated solar light and visible light, respectively, both achieving about 2.2 times higher than that of Bi2MoO6. This work provides a successful example of improving photocatalytic N2 fixation, and it may show some light on the design and preparation of heteroatom-doped semiconductor photocatalysts for N2-to-NH3 conversion.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Chunran Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Shude Yuan
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Xiaojing Li
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Jiayu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China.
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China; Key Laboratory of Solid State Optoelectronic Devices of Zhejiang province, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China.
| |
Collapse
|
27
|
Zhang L, Fan H, Dang Y, Zhuang Q, Arandiyan H, Wang Y, Cheng N, Sun H, Pérez Garza HH, Zheng R, Wang Z, S Mofarah S, Koshy P, Bhargava SK, Cui Y, Shao Z, Liu Y. Recent advances in in situ and operando characterization techniques for Li 7La 3Zr 2O 12-based solid-state lithium batteries. MATERIALS HORIZONS 2023; 10:1479-1538. [PMID: 37040188 DOI: 10.1039/d3mh00135k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Li7La3Zr2O12 (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li+ migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes. Using conventional ex situ characterization techniques to unravel the reasons that lead to these adverse results often requires disassembly of the battery after operation. The sample may be contaminated during the disassembly process, resulting in changes in the material properties within the battery. In contrast, in situ/operando characterization techniques can capture dynamic information during cycling, enabling real-time monitoring of batteries. Therefore, in this review, we briefly illustrate the key challenges currently faced by LLZO-based SSLBs, review recent efforts to study LLZO-based SSLBs using various in situ/operando microscopy and spectroscopy techniques, and elaborate on the capabilities and limitations of these in situ/operando techniques. This review paper not only presents the current challenges but also outlines future developmental prospects for the practical implementation of LLZO-based SSLBs. By identifying and addressing the remaining challenges, this review aims to enhance the comprehensive understanding of LLZO-based SSLBs. Additionally, in situ/operando characterization techniques are highlighted as a promising avenue for future research. The findings presented here can serve as a reference for battery research and provide valuable insights for the development of different types of solid-state batteries.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Huilin Fan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yuzhen Dang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Quanchao Zhuang
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, China.
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuan Wang
- Institute for Frontier Materials, Deakin University, Melbourne, Vic 3125, Australia
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | | | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhua Cui
- Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
28
|
Ma X, Huang J, Ma L, Jing D. Bandgap and defects regulation of La2−xAxNi1−yByO4+δ (A = K, Sr, B = Co, Mn) Ruddlesden-Popper type perovskites for efficient photocatalytic hydrogen evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Mao P, Fan H, Zhou G, Arandiyan H, Liu C, Lan G, Wang Y, Zheng R, Wang Z, Bhargava SK, Sun H, Liu Y. Graphite-like structured conductive polymer anodes for high-capacity lithium storage with optimized voltage platform. J Colloid Interface Sci 2023; 634:63-73. [PMID: 36528972 DOI: 10.1016/j.jcis.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Graphite is a widely used anode material in commercial lithium-ion batteries (LIBs), but its low theoretical specific capacity and extremely low redox potential limit its application in high-performance lithium-ion batteries. However, developing lithium-ion battery anode with high specific capacity and suitable working potential is still challenging. At present, conductive polymers with excellent properties and graphite-like structures are widely used in the field of electrochemistry, but their Li+ storage mechanism and kinetics are still unclear and need to be further investigated. Therefore, we synthesized the conducting polymer Fe3(2, 3, 6, 7, 10, 11-hexahydroxytriphenylene)2 (Fe-CAT) by the liquid phase method, in which the d-π conjugated structure and pores facilitate electron transfer and electrolyte infiltration, improving the comprehensive electrochemical performance. The Fe-CAT electrode displays a high capacity of 950 mA h g-1 at 200 mA g-1. At the current density of 5.0 A g-1, the electrode shows a reversible capacity of 322 mA h g-1 after 1000 cycles. The average lithiation voltage plateau is ∼ 0.79 V. The combination of ex-situ characterization techniques and electrochemical kinetic analysis reveals the source of the excellent electrochemical performance of Fe-CAT. During the charging/discharging process, the aromatic ring in the organic ligand is involved in the redox reaction. Such results will provide new insights for the design of next-generation high-performance electrode materials for LIBs.
Collapse
Affiliation(s)
- Pengcheng Mao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China
| | - Huilin Fan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China
| | - Guangyu Zhou
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Vic 3000, Australia.
| | - Chang Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China
| | - Gongxu Lan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China
| | - Yuan Wang
- Institute for Frontier Materials, Deakin University, Melbourne, Vic 3125, Australia
| | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Suresh K Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Vic 3000, Australia
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110004, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| |
Collapse
|
30
|
Wang Y, Li Z, Hou L, Wang Y, Zhang L, Wang T, Liu H, Liu S, Qin Q, Liu X. In Situ Activation Endows Orthorhombic Fluorite-Type Samarium Iridium Oxide with Enhanced Acidic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892547 DOI: 10.1021/acsami.2c22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing electrochemical catalysts for acidic water oxidation with improved activity and stability has been the key to the further popularization of proton exchange membrane electrolyzers. In this work, an orthorhombic fluorite-type samarium iridium oxide (Sm3IrO7) catalyst is synthesized by a simple solid-state reaction. After in situ activation, the as-prepared Sm3IrO7 exhibits higher mass activity and durability than that of commercial IrO2. The in-depth analyses indicate the formation of amorphous IrOx species on the surface to evolve to a new heterostructure IrOx/Sm3IrO7, along with Sm leaching during the in situ activation process. More importantly, strong electronic interactions exist between newborn IrOx species and remaining Sm3IrO7, leading to the compressed Ir-O bonds in IrOx compared to commercial IrO2, thus reducing the energy barrier for oxygen evolution reaction (OER) intermediates to improve the OER process. Based on the above-mentioned analyses, it is speculated that the actual active species for enhanced acidic water oxidation should be IrOx/Sm3IrO7, rather than Sm3IrO7 itself. Theoretical calculations confirm that the optimal energy level path of IrOx/Sm3IrO7 follows the lattice oxygen mechanism, and the energy level of surface Ir 5d orbitals is lower than O 2p orbitals in IrOx/Sm3IrO7, enabling it a superior OER activity.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, P. R. China
| | - Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yimeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lijie Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Tiantian Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huihui Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
31
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
32
|
Choi JY, Wang M, Check B, Stodolka M, Tayman K, Sharma S, Park J. Linker-Based Bandgap Tuning in Conductive MOF Solid Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206988. [PMID: 36642807 DOI: 10.1002/smll.202206988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Herein, the synthesis of Cu3 (HAB)x (TATHB)2-x (HAB: hexaaminobenzene, TATHB: triaminotrihydroxybenzene) is reported. Synthetic improvement of Cu3 (TATHB)2 leads to a more crystalline framework with higher electrical conductivity value than previously reported. The improved crystallinity and analogous structure between TATHB and HAB enable the synthesis of Cu3 (HAB)x (TATHB)2-x with ligand compositions precisely controlled by precursor ratios. The electrical conductivity is tuned from 4.2 × 10-8 to 2.9 × 10-5 S cm-1 by simply increasing the nitrogen content in the crystal lattice. Furthermore, computational calculation supports that the solid solution facilitates the band structure tuning. It is envisioned that the findings not only shed light on the ligand-dependent structure-property relationship but create new prospects in synthesizing multicomponent electrically conductive metal-organic frameworks (MOFs) for tailoring optoelectronic device applications.
Collapse
Affiliation(s)
- Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Minyan Wang
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Brianna Check
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Kyle Tayman
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
33
|
Anyanwu VO, Friedrich HB, Mahomed AS, Singh S, Moyo T. Phase Transition of High-Surface-Area Glycol-Thermal Synthesized Lanthanum Manganite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1274. [PMID: 36770280 PMCID: PMC9920577 DOI: 10.3390/ma16031274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Cubic and rhombohedral phases of lanthanum manganite were synthesized in a high-pressure reactor. A mixture of La and Mn nitrates with ethylene glycol at a synthesis temperature of 200 °C and a calcination temperature of up to 1000 °C, resulted in a single-phase perovskite, LaMnO3 validated using X-ray diffraction. Significant changes in unit cell volumes from 58 to 353 Å3 were observed associated with structural transformation from the cubic to the rhombohedral phase. This was confirmed using structure calculations and resistivity measurements. Transmission electron microscopy analyses showed small particle sizes of approximately 19, 39, 45, and 90 nm (depending on calcination temperature), no agglomeration, and good crystallinity. The particle characteristics, high purity, and high surface area (up to 33.1 m2/g) of the material owed to the inherent PAAR reactor pressure, are suitable for important technological applications, that include the synthesis of perovskite oxides. Characteristics of the synthesized LaMnO3 at different calcination temperatures are compared, and first-principles calculations suggest a geometric optimization of the cubic and rhombohedral perovskite structures.
Collapse
|
34
|
Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with β-pyrochlore Structure. Life (Basel) 2023; 13:life13020352. [PMID: 36836711 PMCID: PMC9959904 DOI: 10.3390/life13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Graft copolymerization of methyl methacrylate onto cod collagen was carried out under visible light irradiation (λ = 400-700 nm) at 20-25 °C using the RbTe1.5W0.5O6, CsTeMoO6, and RbNbTeO6 complex oxides with β-pyrochlore structure as photocatalysts. The as-prepared materials were characterized by X-ray diffraction, scanning electron microscopy, and UV-Vis diffuse reflectance spectroscopy. It was also found that RbNbTeO6 with β-pyrochlore structure was not able to photocatalyze the reaction. Enzymatic hydrolysis of the obtained graft copolymers proceeds with the formation of peptides with a molecular weight (MW) of about 20 and 10 kDa. In contrast to collagen, which decomposes predominantly to peptides with MW of about 10 kDa, the ratio of fractions with MW of about 10 kDa and 20 kDa differs much less, their changes are symbatic, and the content of polymers with MW of more than 20 kDa is about 70% after 1 h in the case of graft copolymers. The data obtained indicate that synthetic fragments grafted to the collagen macromolecule do not prevent the hydrolysis of the peptide bonds but change the rate of polymer degradation. This is important for creating network matrix scaffolds based on graft copolymers by cross-linking peptides, which are products of enzymatic hydrolysis.
Collapse
|
35
|
Li L, Tao D, Zhao Q, Fu S, Chen C, Tian M, Shi J, Ma M, He C. Strengthening chlorobenzene catalytic degradation rate and selectivity over LaxSr1-xMnO3±δ by anchoring interfacial oxygen vacancy. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Qian L, Li J, Lan G, Wang Y, Cao S, Bai L, Zheng R, Wang Z, Bhargava SK, Sun H, Arandiyan H, Liu Y. Towards Low‐Voltage and High‐Capacity Conversion‐Based Oxide Anodes by Configuration Entropy Optimization. ChemElectroChem 2022. [DOI: 10.1002/celc.202201012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lizhi Qian
- School of Materials Science and Engineering Northeastern University 110819 Shenyang PR China
| | - Jinliang Li
- School of Materials Science and Engineering Northeastern University 110819 Shenyang PR China
| | - Gongxu Lan
- School of Materials Science and Engineering Northeastern University 110819 Shenyang PR China
| | - Yuan Wang
- Institute for Frontier Materials Deakin University 3125 Melbourne Vic Australia
| | - Sufeng Cao
- Aramco Americas Boston Research Center 400 Technology Square 02139 Cambridge MA United States
| | - Lu Bai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology 100190 Beijing PR China
| | - Runguo Zheng
- School of Materials Science and Engineering Northeastern University 110819 Shenyang PR China
- School of Resources and Materials Northeastern University at Qinhuangdao 066004 Qinhuangdao PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province 066004 Qinhuangdao PR China
| | - Zhiyuan Wang
- School of Materials Science and Engineering Northeastern University 110819 Shenyang PR China
- School of Resources and Materials Northeastern University at Qinhuangdao 066004 Qinhuangdao PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province 066004 Qinhuangdao PR China
| | - Suresh K Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC) School of Science RMIT University 3000 Melbourne Vic Australia
| | - Hongyu Sun
- School of Resources and Materials Northeastern University at Qinhuangdao 066004 Qinhuangdao PR China
| | - Hamidreza Arandiyan
- Centre for Applied Materials and Industrial Chemistry (CAMIC) School of Science RMIT University 3000 Melbourne Vic Australia
- Laboratory of Advanced Catalysis for Sustainability School of Chemistry University of Sydney 2006 Sydney NSW Australia
| | - Yanguo Liu
- School of Materials Science and Engineering Northeastern University 110819 Shenyang PR China
- School of Resources and Materials Northeastern University at Qinhuangdao 066004 Qinhuangdao PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province 066004 Qinhuangdao PR China
| |
Collapse
|
37
|
Mastering the D-Band Center of Iron-Series Metal-Based Electrocatalysts for Enhanced Electrocatalytic Water Splitting. Int J Mol Sci 2022; 23:ijms232315405. [PMID: 36499732 PMCID: PMC9737096 DOI: 10.3390/ijms232315405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The development of non-noble metal-based electrocatalysts with high performance for hydrogen evolution reaction and oxygen evolution reaction is highly desirable in advancing electrocatalytic water-splitting technology but proves to be challenging. One promising way to improve the catalytic activity is to tailor the d-band center. This approach can facilitate the adsorption of intermediates and promote the formation of active species on surfaces. This review summarizes the role and development of the d-band center of materials based on iron-series metals used in electrocatalytic water splitting. It mainly focuses on the influence of the change in the d-band centers of different composites of iron-based materials on the performance of electrocatalysis. First, the iron-series compounds that are commonly used in electrocatalytic water splitting are summarized. Then, the main factors affecting the electrocatalytic performances of these materials are described. Furthermore, the relationships among the above factors and the d-band centers of materials based on iron-series metals and the d-band center theory are introduced. Finally, conclusions and perspectives on remaining challenges and future directions are given. Such information can be helpful for adjusting the active centers of catalysts and improving electrochemical efficiencies in future works.
Collapse
|
38
|
Han L, Zhang J, Zou M, Tong JJ. Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204784. [PMID: 36300911 DOI: 10.1002/smll.202204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.
Collapse
Affiliation(s)
- Liang Han
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jiawei Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Minda Zou
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jianhua Joshua Tong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
39
|
Chang H, Tian W, Chen H, Li SD, Shao Z. Improved CO2 electrolysis by a Fe nanoparticle-decorated (Ce, La, Sr)(CrFe)O3-δ perovskite using a combined strategy of lattice defect-building. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Dong Q, Ji S, Wang H, Linkov V, Wang R. Oxygen Spillover Effect at Cu/Fe 2O 3 Heterointerfaces to Enhance Oxygen Electrocatalytic Reactions for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51222-51233. [PMID: 36326106 DOI: 10.1021/acsami.2c15769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rational design and synthesis of high-performance electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are critical for practical application of Zn-air batteries (ZABs). In this work, the bifunctional composite Cu-Fe2O3/PNC was prepared by a simple and effective wet-hydrothermal coupled dry-annealing synthesis strategy. The Cu-Fe2O3/PNC displayed excellent catalytic activity in ORR and OER with a potential difference of 0.63 V. More importantly, the ZAB assembled with Cu-Fe2O3/PNC exhibited a high-power density of 138.00 mW cm-2 and an excellent long-term cyclability. X-ray photoelectron spectroscopy (XPS) demonstrated that the excellent performance is due to the strong electronic interaction between Cu and Fe2O3 that arises as a result of the fast electron transfer through the Cu-O-Fe bond and the higher concentration of surface oxygen vacancies. Meanwhile, the spillover factor Bsp/2zF of Cu/PNC and Cu-Fe2O3/PNC obtained by the rotating disk experiment was 1.00 × 10-7 and 1.10 × 10-7 cm2·s-1, respectively, indicating that the oxygen spillover effect between Cu and Fe2O3 lowers the energy barrier, increases the number of active sites, and alters the rate-determining reaction step. This work demonstrated the significant potential of Cu-Fe2O3/PNC in energy conversion and storage applications, providing a new perspective for the rational design of bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing314001, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Vladimir Linkov
- South African Institute for Advanced Material Chemistry, University of the Western Cape, Cape Town7535, South Africa
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| |
Collapse
|
41
|
Li X, Lin Z, Jin N, Yang X, Sun L, Wang Y, Xie L, Chen X, Lei L, Rozier P, Simon P, Liu Y. Boosting the lithium-ion storage performance of perovskite Sr VO3– via Sr cation and O anion deficient engineering. Sci Bull (Beijing) 2022; 67:2305-2315. [DOI: 10.1016/j.scib.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
42
|
Sumalatha E, Hari kumar N, Edukondalu A, Ravinder D. Effect of La3+ ion doped Co-Zn Nano Ferrites: Structural, Optical, Electrical and Magnetic Properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Guo J, Cai R, Cali E, Wilson GE, Kerherve G, Haigh SJ, Skinner SJ. Low-Temperature Exsolution of Ni-Ru Bimetallic Nanoparticles from A-Site Deficient Double Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107020. [PMID: 35182013 DOI: 10.1002/smll.202107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Exsolution of stable metallic nanoparticles for use as efficient electrocatalysts has been of increasing interest for a range of energy technologies. Typically, exsolved nanoparticles show higher thermal and coarsening stability compared to conventionally deposited catalysts. Here, A-site deficient double perovskite oxides, La2- x NiRuO6- δ (x = 0.1 and 0.15), are designed and subjected to low-temperature reduction leading to exsolution. The reduced double perovskite materials are shown to exsolve nanoparticles of 2-6 nm diameter during the reduction in the low-temperature range of 350-450 °C. The nanoparticle sizes are found to increase after reduction at the higher temperature (450 °C), suggesting diffusion-limited particle growth. Interestingly, both nickel and ruthenium are co-exsolved during the reduction process. The formation of bimetallic nanoparticles at such low temperatures is rare. From the in situ impedance spectroscopy measurements of the double perovskite electrode layers, the onset of the exsolution process is found to be within the first few minutes of the reduction reaction. In addition, the area-specific resistance of the electrode layers is found to decrease by 90% from 291 to 29 Ω cm2 , suggesting encouraging prospects for these low-temperature rapidly exsolved Ni/Ru alloy nanoparticles in a range of catalytic applications.
Collapse
Affiliation(s)
- Jia Guo
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Eleonora Cali
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - George E Wilson
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Gwilherm Kerherve
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Stephen J Skinner
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
44
|
Nazarian-Samani M, Nazarian-Samani M, Haghighat-Shishavan S, Kim KB. Fe 3+-Derived Boosted Charge Transfer in an FeSi 4P 4 Anode for Ultradurable Li-Ion Batteries. ACS NANO 2022; 16:12606-12619. [PMID: 35904525 DOI: 10.1021/acsnano.2c04170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ion and electron transportation determine the electrochemical performance of anodes in metal-ion batteries. This study demonstrates the advantage of charge transfer over mass transport in ensuring ultrastable electrochemical performance. Additionally, charge transfer governs the quality, composition, and morphology of a solid-electrolyte interphase (SEI) film. We develop FeSi4P4-carbon nanotube (FSPC) and reduced-FeSi4P4-carbon nanotube (R-FSPC) heterostructures. The FSPC contains abundant Fe3+ cations and negligible pore contents, whereas R-FSPC predominantly comprises Fe2+ and an abundance of nanopores and vacancies. The copious amount of Fe3+ ions in FSPC significantly improves charge transfer during Li-ion battery tests and leads to the formation of a thin monotonic SEI film. This prevents the formation of detrimental LiP and crystalline-Li3.75Si phases and the aggregation of discharging/recharging products and guarantees the reformation of FeSi4P4 nanocrystals during delithiation. Thus, FSPC delivers a high initial Coulombic efficiency (>90%), exceptional rate capability (616 mAh g-1 at 15 A g-1), and ultrastable symmetric/asymmetric cycling performance (>1000 cycles at ultrahigh current densities). This study deepens our understanding of the effects of electron transport on regulating the structural and electrochemical properties of electrode materials in high-performance batteries.
Collapse
Affiliation(s)
- Mahboobeh Nazarian-Samani
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Masoud Nazarian-Samani
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Safa Haghighat-Shishavan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwang-Bum Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
45
|
Mahmoudi F, Saravanakumar K, Maheskumar V, Njaramba LK, Yoon Y, Park CM. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129074. [PMID: 35567810 DOI: 10.1016/j.jhazmat.2022.129074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Farzaneh Mahmoudi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Velusamy Maheskumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
46
|
Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism. Nat Commun 2022; 13:4618. [PMID: 35941119 PMCID: PMC9359987 DOI: 10.1038/s41467-022-32393-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
Perovskites with exsolved nanoparticles (P-eNs) have immense potentials for carbon dioxide (CO2) reduction in solid oxide electrolysis cell. Despite the recent achievements in promoting the B-site cation exsolution for enhanced catalytic activities, the unsatisfactory stability of P-eNs at high voltages greatly impedes their practical applications and this issue has not been elucidated. In this study, we reveal that the formation of B-site vacancies in perovskite scaffold is the major contributor to the degradation of P-eNs; we then address this issue by fine-regulating the B-site supplement of the reduced Sr2Fe1.3Ni0.2Mo0.5O6-δ using foreign Fe sources, achieving a robust perovskite scaffold and prolonged stability performance. Furthermore, the degradation mechanism from the perspective of structure stability of perovskite has also been proposed to understand the origins of performance deterioration. The B-site supplement endows P-eNs with the capability to become appealing electrocatalysts for CO2 reduction and more broadly, for other energy storage and conversion systems.
Collapse
|
47
|
Ni(NO3)2-induced high electrocatalytic hydrogen evolution performance of self-supported fold-like WC coating on carbon fiber paper prepared through molten salt method. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Le MT, Nguyen PA, Tran TTH, Chu THN, Wang Y, Arandiyan H. Catalytic performance of spinel-type Ni-Co Oxides for Oxidation of Carbon Monoxide and Toluene. Top Catal 2022. [DOI: 10.1007/s11244-022-01676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Dong Q, Wang H, Ren J, Wang X, Ji S, Wang R. Ultra-dispersed copper nanoparticles constructing crystalline-amorphous interface sites for alkaline water splitting. J Colloid Interface Sci 2022; 627:650-660. [PMID: 35872421 DOI: 10.1016/j.jcis.2022.07.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
In literature, the creation of an interface between a highly conductive crystalline phase and an amorphous phase with unsaturated sites has been proven to be an effective strategy in the design of electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the procedural complexity and limited formation of interfaces have compromised the envisioned effects. In this work, the dense crystalline Fe2O3/amorphous Cu interface was created simultaneously by the combination of solverthermal and annealing processes. The results showed that the ultra-dispersed Cu nanoparticles attributed to the formation of crystalline-amorphous (c-a) interface sites, which facilitated the electron transfer with the tuned electronic structures as well as the favorable adsorption of surface oxygen species. As a result, the developed Fe2O3/Cu-PNC catalyst outperformed most of the competing bifunctional catalysts reported for both OER and HER operations.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092 Johannesburg, South Africa.
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
50
|
Zha R, Li C, He L, Zhang M. Two-Dimensional Defective Black Phosphorus/BiVO4 Nanoheterojunctions for Molecular Nitrogen Activation. J Colloid Interface Sci 2022; 628:378-388. [DOI: 10.1016/j.jcis.2022.07.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 10/17/2022]
|