Tan J, Li Z, Li J, Wu J, Yao X, Zhang T. Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: A review on materials design and mechanisms.
CHEMOSPHERE 2021;
262:127675. [PMID:
32805652 DOI:
10.1016/j.chemosphere.2020.127675]
[Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
With the increasingly serious water environment problem, the persulfate-based advanced oxidation process (PS-AOP) has attracted considerable attention in water pollution treatment. To date, graphitic carbon nitride (g-C3N4) has been greatly favored by researchers in activating PS for its capability and unique superiorities. Though g-C3N4-based PS-AOP exhibits huge development prospects in removing organic pollutants, the review about its research progress has not been reported. Herein, this paper reviews the modification of g-C3N4 on the basis of its applications and properties for PS activation systematically. The activation mechanisms of g-C3N4-based modified materials are analyzed in detail, and the main formation pathways of radicals and non-radicals and their interaction mechanism with pollutants are thoroughly summarized. Finally, the existing challenges and future development directions of the PS-AOP driven by g-C3N4-based materials are critically discussed. The key purpose is to provide a reference for promoting the further popularization of this novel and efficient cooperative AOP in water purification industries, as well as multidisciplinary inspirations for g-C3N4-involved fields.
Collapse