1
|
Chilunda M, Talipov SA, Farooq HMU, Biddinger EJ. Electrochemical Cycling of Liquid Organic Hydrogen Carriers as a Sustainable Approach for Hydrogen Storage and Transportation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:1174-1195. [PMID: 39886475 PMCID: PMC11776106 DOI: 10.1021/acssuschemeng.4c05784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Hydrogen (H2), as a high-energy-density molecule, offers a clean solution to carry energy. However, the high diffusivity and low volumetric density of H2 pose a challenge for long-term storage and transportation. Liquid organic hydrogen carriers (LOHCs) have been suggested as a strategic way to store and transport hydrogen in stable molecules. More so, electrochemical LOHC cycling renders an opportunity to utilize renewable energy for hydrogen storage and transportation toward the goal of eliminating carbon emissions. In this Perspective, examples of electrochemical reactions of organic molecules and their suitability for LOHC couples are examined. A comparative carbon footprint assessment of electrochemical LOHC cycling processes against thermochemical and hybrid LOHC cycling processes was performed. The electrochemical LOHC cycling process had the lowest relative carbon footprint only when highly concentrated LOHCs were used as the feed or when purification of the LOHC product was not required. The carbon footprint in electrochemical cycling of diluted LOHC was primarily contributed to by the LOHC distillation separation process. A sensitivity analysis showed the carbon footprint LOHC concentration dependence during the electrochemical cycling process. Moreover, the electrolyte composition significantly affects the carbon footprint during electrochemical LOHC cycling. Energy utilization, water usage, and toxicity for electrochemical LOHC cycling are discussed to provide an overview for better economic and environmental practices. There are significant opportunities in the electrochemical cycling of LOHCs if appropriate conditions such as high concentrations of reactant, reversible redox cycling ability, high Faradaic efficiencies, and catalyst stabilities are achieved.
Collapse
Affiliation(s)
- Moses
D. Chilunda
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States
| | - Sarvarjon A. Talipov
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States
| | - Hafiz M. Umar Farooq
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States
| | - Elizabeth J. Biddinger
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, United States
| |
Collapse
|
2
|
Pota F, Costa de Oliveira MA, Schröder C, Brunet Cabré M, Nolan H, Rafferty A, Jeannin O, Camerel F, Behan JA, Barrière F, Colavita PE. Porous N-Doped Carbon-encapsulated Iron as Novel Catalyst Architecture for the Electrocatalytic Hydrogenation of Benzaldehyde. CHEMSUSCHEM 2025; 18:e202400546. [PMID: 39037891 PMCID: PMC11696197 DOI: 10.1002/cssc.202400546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Carbon porous materials containing nitrogen functionalities and encapsulated iron-based active sites have been suggested as electrocatalysts for energy conversion, however their applications to the hydrogenation of organic substrates via electrocatalytic hydrogenation (ECH) remain unexplored. Herein, we report on a Fe@C:N material synthesized with an adapted annealing procedure and tested as electrocatalyst for the hydrogenation of benzaldehyde. Using different concentrations of the organic, and electrolysis coupled to gas chromatography experiments, we demonstrate that it is possible to use such architectures for the ECH of unsaturated organics. Potential control experiments show that ECH faradaic efficiencies >70 % are possible in acid electrolytes, while maintaining selectivity for the alcohol over the pinacol dimerization product. Estimates of product formation rates and turnover frequency (TOF) values suggest that these carbon-encapsulated architectures can achieve competitive performance in acid electrolytes relative to both base and precious metal electrodes.
Collapse
Affiliation(s)
- Filippo Pota
- School of ChemistryTrinity College Dublin, College GreenDublin 2Ireland
| | | | | | - Marc Brunet Cabré
- School of ChemistryTrinity College Dublin, College GreenDublin 2Ireland
| | - Hugo Nolan
- School of ChemistryTrinity College Dublin, College GreenDublin 2Ireland
| | - Aran Rafferty
- School of ChemistryTrinity College Dublin, College GreenDublin 2Ireland
| | - Olivier Jeannin
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes – UMR 6226F-35000RennesFrance
| | - Franck Camerel
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes – UMR 6226F-35000RennesFrance
| | - James A. Behan
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes – UMR 6226F-35000RennesFrance
| | - Frédéric Barrière
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes – UMR 6226F-35000RennesFrance
| | - Paula E. Colavita
- School of ChemistryTrinity College Dublin, College GreenDublin 2Ireland
| |
Collapse
|
3
|
Chen H, Iyer J, Liu Y, Krebs S, Deng F, Jentys A, Searles DJ, Haider MA, Khare R, Lercher JA. Mechanism of Electrocatalytic H 2 Evolution, Carbonyl Hydrogenation, and Carbon-Carbon Coupling on Cu. J Am Chem Soc 2024; 146:13949-13961. [PMID: 38739624 PMCID: PMC11117180 DOI: 10.1021/jacs.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.
Collapse
Affiliation(s)
- Hongwen Chen
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Jayendran Iyer
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Yue Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
| | - Simon Krebs
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Fuli Deng
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Andreas Jentys
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, QLD, Australia
- ARC Centre
of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane 4072, QLD, Australia
| | - M. Ali Haider
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Indian
Institute of Technology Delhi−Abu Dhabi, Khalifa City B, Abu Dhabi, United Arab Emirates
| | - Rachit Khare
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland 99352, Washington, United States
| |
Collapse
|
4
|
Si D, Teng X, Xiong B, Chen L, Shi J. Electrocatalytic functional group conversion-based carbon resource upgrading. Chem Sci 2024; 15:6269-6284. [PMID: 38699249 PMCID: PMC11062096 DOI: 10.1039/d4sc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/23/2024] [Indexed: 05/05/2024] Open
Abstract
The conversions of carbon resources, such as alcohols, aldehydes/ketones, and ethers, have been being one of the hottest topics most recently for the goal of carbon neutralization. The emerging electrocatalytic upgrading has been regarded as a promising strategy aiming to convert carbon resources into value-added chemicals. Although exciting progress has been made and reviewed recently in this area by mostly focusing on the explorations of valuable anodic oxidation or cathodic reduction reactions individually, however, the reaction rules of these reactions are still missing, and how to purposely find or rationally design novel but efficient reactions in batches is still challenging. The properties and transformations of key functional groups in substrate molecules play critically important roles in carbon resources conversion reactions, which have been paid more attention to and may offer hidden keys to achieve the above goal. In this review, the properties of functional groups are addressed and discussed in detail, and the reported electrocatalytic upgrading reactions are summarized in four categories based on the types of functional groups of carbon resources. Possible reaction pathways closely related to functional groups will be summarized from the aspects of activation, cleavage and formation of chemical bonds. The current challenges and future opportunities of electrocatalytic upgrading of carbon resources are discussed at the end of this review.
Collapse
Affiliation(s)
- Di Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xue Teng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingyan Xiong
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University Shanghai 200072 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
5
|
Zheng M, Zhang J, Wang P, Jin H, Zheng Y, Qiao SZ. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307913. [PMID: 37756435 DOI: 10.1002/adma.202307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.
Collapse
Affiliation(s)
- Min Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junyu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
6
|
Nielsen CJ, Laan PCM, Plessius R, Reek JNH, van der Vlugt JI, Pullen S. Probing the influence of substrate binding on photocatalytic dehalogenation with a heteroleptic supramolecular [M 4L a2L b2] square containing PDI photosensitizers as ligands. Faraday Discuss 2023; 244:199-209. [PMID: 37186104 DOI: 10.1039/d2fd00179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Photoredox catalysis is a valuable tool in a large variety of chemical reactions. Main challenges still to be overcome are photodegradation of photocatalysts and substrates, short lifetimes of reactive intermediates, and selectivity issues due to unwanted side reactions. A potential solution to these challenges is the pre-organization of the photosensitizer, substrate and (co)-catalyst in supramolecular self-assembled structures. In such architectures, (organic) dyes can be stabilized, and higher selectivity could potentially be achieved through pre-organizing desired reaction partners via non-covalent interactions. Perylene diimide (PDI) is an organic dye, which can be readily reduced to its mono- and dianion. Excitation of both anions leads to highly reducing excited states, which are able to reduce a variety of substrates via single electron transfer. The incorporation of PDI into a heteroleptic [M4La2Lb2] supramolecular square has been recently demonstrated. Herein we investigate its photophysical properties and demonstrate that incorporated PDI indeed features photocatalytic activity. Initial results suggest that the pre-organisation by binding positively affects the outcome.
Collapse
Affiliation(s)
- C Jasslie Nielsen
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Petrus C M Laan
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Raoul Plessius
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
- Bioinspired Coordination Chemistry & Catalysis, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg, Germany
| | - Sonja Pullen
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Controlling the reactions of free radicals with metal-radical interaction. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Page JR, Manfredi Z, Bliznakov S, Valla JA. Recent Progress in Electrochemical Upgrading of Bio-Oil Model Compounds and Bio-Oils to Renewable Fuels and Platform Chemicals. MATERIALS (BASEL, SWITZERLAND) 2023; 16:394. [PMID: 36614733 PMCID: PMC9822173 DOI: 10.3390/ma16010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Sustainable production of renewable carbon-based fuels and chemicals remains a necessary but immense challenge in the fight against climate change. Bio-oil derived from lignocellulosic biomass requires energy-intense upgrading to produce usable fuels or chemicals. Traditional upgrading methods such as hydrodeoxygenation (HDO) require high temperatures (200−400 °C) and 200 bar of external hydrogen. Electrochemical hydrogenation (ECH), on the other hand, operates at low temperatures (<80 °C), ambient pressure, and does not require an external hydrogen source. These environmental and economically favorable conditions make ECH a promising alternative to conventional thermochemical upgrading processes. ECH combines renewable electricity with biomass conversion and harnesses intermediately generated electricity to produce drop-in biofuels. This review aims to summarize recent studies on bio-oil upgrading using ECH focusing on the development of novel catalytic materials and factors impacting ECH efficiency and products. Here, electrode design, reaction temperature, applied overpotential, and electrolytes are analyzed for their impacts on overall ECH performance. We find that through careful reaction optimization and electrode design, ECH reactions can be tailored to be efficient and selective for the production of renewable fuels and chemicals. Preliminary economic and environmental assessments have shown that ECH can be viable alternative to convention upgrading technologies with the potential to reduce CO2 emissions by 3 times compared to thermochemical upgrading. While the field of electrochemical upgrading of bio-oil has additional challenges before commercialization, this review finds ECH a promising avenue to produce renewable carbon-based drop-in biofuels. Finally, based on the analyses presented in this review, directions for future research areas and optimization are suggested.
Collapse
Affiliation(s)
- Jeffrey R. Page
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| | - Zachary Manfredi
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA
| | - Stoyan Bliznakov
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| | - Julia A. Valla
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Yu J, Zhang P, Li L, Li K, Zhang G, Liu J, Wang T, Zhao ZJ, Gong J. Electroreductive coupling of benzaldehyde by balancing the formation and dimerization of the ketyl intermediate. Nat Commun 2022; 13:7909. [PMID: 36564379 PMCID: PMC9789095 DOI: 10.1038/s41467-022-35463-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Electroreductive coupling of biomass-derived benzaldehyde offers a sustainable approach to producing value-added hydrobenzoin. The low efficiency of the reaction mainly ascribes to the mismatch of initial formation and subsequent dimerization of ketyl intermediates (Ph-CH = O → Ph-C·-OH → Ph-C(OH)-C(OH)-Ph). This paper describes a strategy to balance the active sites for the generation and dimerization of ketyl intermediates by constructing bimetallic Pd/Cu electrocatalysts with tunable surface coverage of Pd. A Faradaic efficiency of 63.2% and a hydrobenzoin production rate of up to 1.27 mmol mg-1 h-1 (0.43 mmol cm-2 h-1) are achieved at -0.40 V vs. reversible hydrogen electrode. Experimental results and theoretical calculations reveal that Pd promotes the generation of the ketyl intermediate, and Cu enhances their dimerization. Moreover, the balance between these two sites facilitates the coupling of benzaldehyde towards hydrobenzoin. This work offers a rational strategy to design efficient electrocatalysts for complex reactions through the optimization of specified active sites for different reaction steps.
Collapse
Affiliation(s)
- Jia Yu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Peng Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Lulu Li
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Kailang Li
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jia Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
10
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
11
|
Wu S, Huang X, Zhang H, Wei Z, Wang M. Efficient Electrochemical Hydrogenation of Nitroaromatics into Arylamines on a CuCo 2O 4 Spinel Cathode in an Alkaline Electrolyte. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shutao Wu
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xun Huang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Hongliang Zhang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Zidong Wei
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Meng Wang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
12
|
Zhou L, Zhu X, Su H, Lin H, Lyu Y, Zhao X, Chen C, Zhang N, Xie C, Li Y, Lu Y, Zheng J, Johannessen B, Jiang SP, Liu Q, Li Y, Zou Y, Wang S. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1100-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Wu S, Zhang H, Huang X, Liao Q, Wei Z. Acrylonitrile Conversion on Metal Cathodes: How Surface Adsorption Determines the Reduction Pathways. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shutao Wu
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Hongliang Zhang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xun Huang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Qiang Liao
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Zidong Wei
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
14
|
Malkani AS, Anibal J, Chang X, Xu B. Bridging the Gap in the Mechanistic Understanding of Electrocatalysis via In Situ Characterizations. iScience 2020; 23:101776. [PMID: 33294785 PMCID: PMC7689167 DOI: 10.1016/j.isci.2020.101776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Electrocatalysis offers a promising strategy to take advantage of the increasingly available and affordable renewable energy for the sustainable production of fuels and chemicals. Attaining this promise requires a molecular level insight of the electrical interface that can be used to tailor the selectivity of electrocatalysts. Addressing this selectivity challenge remains one of the most important areas in modern electrocatalytic research. In this Perspective, we focus on the use of in situ techniques to bridge the gap in the fundamental understanding of electrocatalytic processes. We begin with a brief discussion of traditional electrochemical techniques, ex situ measurements and in silico analysis. Subsequently, we discuss the utility and limitations of in situ methodologies, with a focus on vibrational spectroscopies. We then end by looking ahead toward promising new areas for the application of in situ techniques and improvements to current methods.
Collapse
Affiliation(s)
- Arnav S. Malkani
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Jacob Anibal
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Xiaoxia Chang
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Bingjun Xu
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Carvalho OQ, Adiga P, Murthy SK, Fulton JL, Gutiérrez OY, Stoerzinger KA. Understanding the Role of Surface Heterogeneities in Electrosynthesis Reactions. iScience 2020; 23:101814. [PMID: 33305178 PMCID: PMC7708810 DOI: 10.1016/j.isci.2020.101814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this perspective, we highlight the role of surface heterogeneity in electrosynthesis reactions. Heterogeneities may come in the form of distinct crystallographic facets, boundaries between facets or grains, or point defects. We approach this topic from a foundation of surface science, where signatures from model systems provide understanding of observations on more complex and higher-surface-area materials. In parallel, probe-based techniques can inform directly on spatial variation across electrode surfaces. We call attention to the role spectroscopy can play in understanding the impact of these heterogeneities in electrocatalyst activity and selectivity, particularly where these surface features have effects extending into the electrolyte double layer.
Collapse
Affiliation(s)
- O. Quinn Carvalho
- School of Chemical, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Prajwal Adiga
- School of Chemical, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Sri Krishna Murthy
- School of Chemical, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - John L. Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Kelsey A. Stoerzinger
- School of Chemical, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| |
Collapse
|
16
|
Anibal J, Xu B. Electroreductive C–C Coupling of Furfural and Benzaldehyde on Cu and Pb Surfaces. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacob Anibal
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|