1
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Makabu CM, Tian S, Kalau MK, Gong Z, Niu W, Wu C, Li J. Nanoflower-like FeVNi 3S 2-xas efficient electrocatalyst for alkaline oxygen evolution reaction. NANOTECHNOLOGY 2023; 34:455402. [PMID: 37524070 DOI: 10.1088/1361-6528/acebf2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The development of low cost efficient catalysts for oxygen evolution reaction (OER) is still a obstacle to realize the commercialization of electrocatalytic water splitting. Herein, interface engineering and heteroatom doping is adopted to synthesize iron and vanadium doped nickel sulfide on nickel foam via hydrothermal method followed by hydrogen treatment to create sulfur defects. The optimized nanoflower-like FeVNi3S2-x/NF is an efficient OER electrocatalyst that outperforms many of the reported transition metals catalysts. Benefiting from abundant sulfur defects and the synergistic effect of heteroatom doping, FeVNi3S2-x/NF exhibits an ultralow overpotential of 230 mV to reach a current density of 100 mA cm-2, a rapid reaction kinetics with a small Tafel slope of 46.6 mV dec-1, and a stable long-term durability in 1 M KOH. Experimental results and characterizations confirm that sulfur vacancies together with the synergistic effect from multiple heteroatom doping can effectively regulate the electronic structure, resulting in increased electrical conductivity and electrochemically active surface area, thus enhancing OER performance. Furthermore,in situRaman spectroscopy reveals that, the reconstitution amorphous nickel oxyhydroxide (NiOOH) on the catalyst surface is responsible for catalyzing the OER reaction. This work represents a promising methodology to synthesize low-cost and highly active OER electrocatalysts.
Collapse
Affiliation(s)
- Cynthia Mulanga Makabu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Shengnan Tian
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Marc Kalamb Kalau
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Zizhen Gong
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weixing Niu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Changcheng Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
3
|
Yang Y, Guo F, Zhang L, Guo X, Wang D, Niu R, Yang H, Li J, Ma G, Lei Z. Iron-modulated Ni 3S 2 derived from a Ni-MOF-based Prussian blue analogue for a highly efficient oxygen evolution reaction. Dalton Trans 2022; 51:17283-17291. [DOI: 10.1039/d2dt02729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing efficient, environmentally friendly and cost-effective non-precious metal electrocatalysts for the oxygen evolution reaction (OER) is essential to alleviate the energy crisis and environmental pollution.
Collapse
Affiliation(s)
- Yaoxia Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Fengyao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lan Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xingwei Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Dangxia Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ruiqing Niu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haidong Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
4
|
Akbayrak M, Önal AM. Metal oxides supported cobalt nanoparticles: Active electrocatalysts for oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Chen TW, Kalimuthu P, Anushya G, Chen SM, Mariyappan V, Ramachandran R. Recent Progress in the Development of Advanced Functionalized Electrodes for Oxygen Evolution Reaction: An Overview. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4420. [PMID: 34442943 PMCID: PMC8400293 DOI: 10.3390/ma14164420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Presently, the global energy demand for increasing clean and green energy consumption lies in the development of low-cost, sustainable, economically viable and eco-friendly natured electrochemical conversion process, which is a significant advancement in different morphological types of advanced electrocatalysts to promote their electrocatalytic properties. Herein, we overviewed the recent advancements in oxygen evolution reactions (OERs), including easy electrode fabrication and significant action in water-splitting devices. To date, various synthetic approaches and modern characterization techniques have effectively been anticipated for upgraded OER activity. Moreover, the discussed electrode catalysts have emerged as the most hopeful constituents and received massive appreciation in OER with low overpotential and long-term cyclic stability. This review article broadly confers the recent progress research in OER, the general mechanistic approaches, challenges to enhance the catalytic performances and future directions for the scientific community.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia;
| | - Ganesan Anushya
- Department of Physics, S.A.V. Sahaya Thai Arts and Science (Women) College, Sahayam Nagar, Kumarapuram Road, Vadakkankulam, Tirunelveli 627116, India;
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
| | - Vinitha Mariyappan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625011, India
| |
Collapse
|
6
|
Roy A, Kang KM, Nah YC, La M, Choi D, Park SJ. Improved electrocatalytic water oxidation with cobalt hydroxide nano-flakes supported on copper-modified nickel foam. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Girginov C, Kozhukharov S, Tsanev A, Dishliev A. Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2020.01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Tan L, Zhang A, Liu Z, Wei P, Yang P, Guo H, Fang H, Han J, Zhu Y, Ren Z. Nanostructured RuO 2-Co 3O 4@RuCo-EO with low Ru loading as a high-efficiency electrochemical oxygen evolution catalyst. RSC Adv 2021; 11:11779-11785. [PMID: 35423785 PMCID: PMC8696486 DOI: 10.1039/d1ra00271f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022] Open
Abstract
Electrochemical water splitting technology is considered to be the most reliable method for converting renewable energy such as wind and solar energy into hydrogen. Here, a nanostructured RuO2/Co3O4–RuCo-EO electrode is designed via magnetron sputtering combined with electrochemical oxidation for the oxygen evolution reaction (OER) in an alkaline medium. The optimized RuO2/Co3O4–RuCo-EO electrode with a Ru loading of 0.064 mg cm−2 exhibits excellent electrocatalytic performance with a low overpotential of 220 mV at the current density of 10 mA cm−2 and a low Tafel slope of 59.9 mV dec−1 for the OER. Compared with RuO2 prepared by thermal decomposition, its overpotential is reduced by 82 mV. Meanwhile, compared with RuO2 prepared by magnetron sputtering, the overpotential is also reduced by 74 mV. Furthermore, compared with the RuO2/Ru with core–shell structure (η = 244 mV), the overpotential is still decreased by 24 mV. Therefore, the RuO2/Co3O4–RuCo-EO electrode has excellent OER activity. There are two reasons for the improvement of the OER activity. On the one hand, the core–shell structure is conducive to electron transport, and on the other hand, the addition of Co adjusts the electronic structure of Ru. The optimized RuO2/Co3O4–RuCo-EO electrode with Ru loading of 0.064 mg cm−2 exhibits the excellent oxygen evolution activity with an overpotential of 220 mV at the current density of 10 mA cm−2 and a Tafel slope of 59.9 mV dec−1.![]()
Collapse
Affiliation(s)
- Lingjun Tan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ailian Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ziyi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ping'an Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Panpan Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Huan Guo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Hua Fang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| |
Collapse
|
9
|
Wu X, Yong C, An X, Kong Q, Yao W, Wang Y, Wang Q, Lei Y, Li W, Xiang Z, Qiao L, Liu X. Ni xCu 1−x/CuO/Ni(OH) 2 as highly active and stable electrocatalysts for oxygen evolution reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03818d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ni–Cu alloy-based nanomaterials are representative cost-effective materials that have been widely used as highly active and stable electrocatalysts for electrochemical energy applications, such as the water oxidation reaction, the methanol/ethanol reaction and many other small molecule oxidation reactions.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Chaoyou Yong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Weitang Yao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yong Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yimin Lei
- School of Advanced Materials and Nanotechnology, Xidian University, 710726 Xi’An, China
| | - Weiyin Li
- School of Electrical & Information Engineering, North Minzu University, Yinchuan 750021, China
| | | | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaonan Liu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|