1
|
Yang K, Huang Y, Wang T, Li Y, Du Y, Ling J, Fan Z, Zhang C, Ma C. In-Situ Anchoring of Co Single-Atom Synergistically with Cd Vacancy of Cadmium Sulfide for Boosting Asymmetric Charge Distribution and Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409832. [PMID: 39388450 DOI: 10.1002/adma.202409832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Indexed: 10/12/2024]
Abstract
In the context of reshaping the energy pattern, designing and synthesizing high-performance noble metal-free photocatalysts with ultra-high atomic utilization for hydrogen evolution reaction (HER) still remains a challenge. In a streamlined synthesis process, in-situ single atom anchoring is performed in parallel with HER by irradiating a precursory defect-state CdS/Co suspension (Co-DCdS-Ss) system under simulated sunlight and the in-situ synthesizing single-atom Co photocatalyst (Co5:DCdS) exhibits further improved catalytic performance (60.10 mmol g-1 h-1) compared with Co-DCdS-Ss (18.09 mmol g-1 h-1), reaching an apparent quantum yield of 57.6% at 500 nm and a solar-chemical energy conversion efficiency (SCC) of 6.26% at AM 1.5G. In-depth characterization tests and density functional theory (DFT) calculations prove that the anchoring of Co single atom deepens the asymmetric charge distribution of the two-coordination S atom adjacent to the cadmium vacancy (VCd). The synergy between electron delocalization VCd and Co single atom on the catalyst surface is constructed, which bifunctional sites responsible for boosting water adsorption-dissociation and hydrogen evolution. This study advances the understanding of the underlying mechanisms of synergy between surface defects and metal single atoms and opens a new horizon for the development of advanced materials in the field of photocatalysis.
Collapse
Affiliation(s)
- Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yating Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Juan Ling
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziyi Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
2
|
Erbasan A, Ustunel H, Toffoli D. Electronic Structure of Rh and Ir Single Atom Catalysts Supported on Defective and Doped ZnO: Assessment of Their Activity Towards CO Oxidation. Molecules 2024; 29:5082. [PMID: 39519723 PMCID: PMC11547260 DOI: 10.3390/molecules29215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the electronic structure of single-atom Rhodium (Rh) and Iridium (Ir) adsorbed on defective and impurity-doped ZnO(0001) surfaces, and assessed their activity towards the CO oxidation reaction. Our findings reveal that surface impurities significantly influence the binding energies and electronic properties of the metal atoms, with Al and Cr serving as particularly effective promoters. While Rh and Ir acquire a positive charge upon incorporation on the unpromoted Zn(0001) surface, adsorption directly on the promoter results in a net negative charge, thus facilitating the activation of both CO and O2 species. These results highlight the potential of impurity-promoted ZnO surfaces in modulating and tailoring the electronic properties of SACs, which can be used for a rational design of active single-atom catalysts.
Collapse
Affiliation(s)
- Arda Erbasan
- Department of Physics, Middle East Technical University, Dumlupinar Blv 1, Ankara 06800, Turkey;
| | - Hande Ustunel
- Department of Physics, Middle East Technical University, Dumlupinar Blv 1, Ankara 06800, Turkey;
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- IOM-CNR, Istituto Officina dei Materiali-CNR, S.S.14, Km 163.5, 34149 Trieste, Italy
| |
Collapse
|
3
|
Wang X, Ma Y, Li Y, Wang L, Chi L. Discovery of highly efficient dual-atom catalysts for propane dehydrogenation assisted by machine learning. Phys Chem Chem Phys 2024; 26:22286-22291. [PMID: 39136548 DOI: 10.1039/d4cp02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Propane dehydrogenation (PDH) is a highly efficient approach for industrial production of propylene, and the dual-atom catalysts (DACs) provide new pathways in advancing atomic catalysis for PDH with dual active sites. In this work, we have developed an efficient strategy to identify promising DACs for PDH reaction by combining high-throughput density functional theory (DFT) calculations and the machine-learning (ML) technique. By choosing the γ-Al2O3(100) surface as the substrate to anchor dual metal atoms, 435 kinds of DACs have been considered to evaluate their PDH catalytic activity. Four ML algorithms are employed to predict the PDH activity and determine the relationship between the intrinsic characteristics of DACs and the catalytic activity. The promising catalysts of CuFe, CuCo and CoZn DACs are finally screened out, which are further validated by the whole kinetic reaction calculations, and the highly efficient performance of DACs is attributed to the synergistic effects and interactions between the paired active sites.
Collapse
Affiliation(s)
- Xianpeng Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yanxia Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lifeng Chi
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Han Y, Ye K, Huang Y, Wu Z, Hu P, Zhang G. Leveraging Interlayer Interaction in M-N-C Catalysts for Enhanced Activity in Oxygen Reduction Reactions. J Phys Chem Lett 2023; 14:9900-9908. [PMID: 37903101 DOI: 10.1021/acs.jpclett.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Atomically dispersed metal-nitrogen-carbon (M-N-C) materials are deemed promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Yet the multilayer nature of M-N-C has been largely neglected in computational analysis. To bridge the gap, we conducted a first-principles investigation using bilayer M-N-C models (TMNx/G-TMNy/G, TM = Mn, Fe, Co, Ni, Cu, G = graphene, x, y = 3 or 4), where the TMs on the top serves as the active center. While in-plane TMN4 at the bottom has a minimal impact on the ORR, out-of-plane TMN3 substantially influences the adsorption free energy of OH through a strong interlayer bonding interaction. By leveraging interlayer interactions, we appreciably lowered the overpotential of selected TMN4 (TM = Co, Ni, Cu) and achieved a minimum of 0.40 V on CoN4/G-CuN3/G. Constant potential calculations revealed weak dependence of OH binding energy on external voltage and obtained results comparable to constant charge calculation. This study provided new physical insight into modulating naturally occurring multilayer M-N-C catalysts.
Collapse
Affiliation(s)
- Yulan Han
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Ke Ye
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Yang Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Ziye Wu
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
| | - P Hu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 China
| |
Collapse
|
5
|
Zhang Y, Wan Y, Liu X, Chen K, Chu K. Nb-doped NiO nanoflowers for nitrite electroreduction to ammonia. iScience 2023; 26:107944. [PMID: 37810221 PMCID: PMC10558769 DOI: 10.1016/j.isci.2023.107944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Electrocatalytic reduction of nitrite to ammonia (NO2RR) is considered as an appealing route to simultaneously achieve sustainable ammonia production and abate hazardous nitrite pollution. Herein, atomically Nb-doped NiO nanoflowers are designed as a high-performance NO2RR catalyst, which exhibits the highest NH3-Faradaic efficiency of 92.4% with an NH3 yield rate of 200.5 μmol h-1 cm-2 at -0.6 V RHE. Theoretical calculations unravel that Nb dopants can act as Lewis acid sites to render effective NO2- activation, decreased protonation energy barriers, and restricted hydrogen evolution, ultimately leading to a high NO2RR selectivity and activity.
Collapse
Affiliation(s)
- Ying Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuying Wan
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoxu Liu
- College of Science, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
6
|
Han Y, Xu J, Xie W, Wang Z, Hu P. Comprehensive Study of Oxygen Vacancies on the Catalytic Performance of ZnO for CO/H 2 Activation Using Machine Learning-Accelerated First-Principles Simulations. ACS Catal 2023; 13:5104-5113. [PMID: 37123602 PMCID: PMC10127212 DOI: 10.1021/acscatal.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Indexed: 04/01/2023]
Abstract
Oxygen vacancies (OVs) play important roles on any oxide catalysts. In this work, using an investigation of the OV effects on ZnO(101̅0) for CO and H2 activation as an example, we demonstrate, via machine learning potentials (MLPs), genetic algorithm (GA)-based global optimization, and density functional theory (DFT) validations, that the ZnO(101̅0) surface with 0.33 ML OVs is the most likely surface configuration under experimental conditions (673 K and 2.5 MPa syngas (H2:CO = 1.5)). It is found that a surface reconstruction from the wurtzite structure to a body-centered-tetragonal one would occur in the presence of OVs. We show that the OVs create a Zn3 cluster site, allowing H2 homolysis and C-O bond cleavage to occur. Furthermore, the activity of intrinsic sites (Zn3c and O3c sites) is almost invariable, while the activity of the generated OV sites is strongly dependent on the concentration of the OVs. It is also found that OV distributions on the surface can considerably affect the reactions; the barrier of C-O bond dissociation is significantly reduced when the OVs are aligned along the [12̅10] direction. These findings may be general in the systems with metal oxides in heterogeneous catalysis and may have significant impacts on the field of catalyst design by regulating the concentration and distribution of the OVs.
Collapse
|
7
|
Xu G, Cai C, Zhao W, Liu Y, Wang T. Rational design of catalysts with earth‐abundant elements. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gaomou Xu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Cheng Cai
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Wanghui Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Yonghua Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| |
Collapse
|
8
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
9
|
Zhang B, Song M, Liu H, Li G, Liu S, Wang L, Zhang X, Liu G. Role of Ni species in ZnO Supported on Silicalite-1 for Efficient Propane Dehydrogenation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Shivhare A, Kumar A, Srivastava R. The Size‐Dependent Catalytic Performances of Supported Metal Nanoparticles and Single Atoms for the Upgrading of Biomass‐Derived 5‐Hydroxymethylfurfural, Furfural, and Levulinic acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Atal Shivhare
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| | - Atul Kumar
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| | - Rajendra Srivastava
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| |
Collapse
|
11
|
Xu Y, Yu W, Zhang H, Xin J, He X, Liu B, Jiang F, Liu X. Suppressing C–C Bond Dissociation for Efficient Ethane Dehydrogenation over the Isolated Co(II) Sites in SAPO-34. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Wenda Yu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Hao Zhang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Jian Xin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohui He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| |
Collapse
|
12
|
Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts. Catalysts 2021. [DOI: 10.3390/catal11101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A systematic study of the comparative performances of different metal-impregnated HZSM-5 catalysts (Zn, Ga, Mo, Co, and Zr) for propane conversion is presented. The physicochemical properties of catalysts were characterized by means of XRD, BET, SEM, TEM, FTIR, XPS, 27Al MAS NMR, NH3-TPD and Py-FTIR. It was found that the acidities of the catalysts were significantly influenced by loading metal. More specifically, Mo-, Co- or Zr-modified catalysts showed a large metal size and low acidic density, resulting high olefin selectivity, while Zn- or Ga-modified catalysts maintained their small metal size and acidic density, and mainly reduced B/L due to the Lewis acid sites created by Zn or Ga species, resulting in high aromatics selectivity. Experimental results also showed that there is a balance between metals size and medium and strong acidity on propane conversion. Moreover, based on the different acidity of metal-modified HZSM-5 catalysts, the mechanism of propane conversion was also discussed.
Collapse
|
13
|
Zeeshan M, Chang Q, Zhang J, Hu P, Sui Z, Zhou X, Chen D, Zhu Y. Effects of Oxygen Vacancy and Pt Doping on the Catalytic Performance of
CeO
2
in Propane Dehydrogenation: A
First‐Principles
Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Zeeshan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qing‐Yu Chang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jun Zhang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ping Hu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhi‐Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xing‐Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology N‐7491 Trondheim Norway
| | - Yi‐An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
14
|
Chang QY, Wang KQ, Sui ZJ, Zhou XG, Chen D, Yuan WK, Zhu YA. Rational Design of Single-Atom-Doped Ga 2O 3 Catalysts for Propane Dehydrogenation: Breaking through Volcano Plot by Lewis Acid–Base Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing-Yu Chang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai-Qi Wang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Wei-Kang Yuan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|