1
|
Festa G, Serrano-Lotina A, Meloni E, Portela R, Ruocco C, Martino M, Palma V. Support Screening to Shape Propane Dehydrogenation SnPt-Based Catalysts. Ind Eng Chem Res 2024; 63:16269-16284. [PMID: 39355008 PMCID: PMC11440506 DOI: 10.1021/acs.iecr.3c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
Propane dehydrogenation reaction (PDH) is an extremely attractive way to produce propylene; however, the catalysts often lead to byproduct formation and suffer from deactivation. This research focuses on the development of efficient Pt/Sn-based shaped catalysts by utilizing Mg-modified mesoporous silica, sepiolite (natural SiMgO x mesoporous clay), and sepiolite/bentonite/alumina as supports with the aim of achieving superior stability and selectivity for industrial propylene production by PDH. The catalysts were prepared by sequential impregnation of the supports with the corresponding solutions of tin chloride and platinum chloride, by obtaining a nominal loading of 0.7 wt % of Sn and 0.5 wt % of Pt. A range of analytical techniques were used to characterize the catalysts, including X-ray diffraction, nitrogen physisorption isotherms, Hg intrusion porosimetry, thermogravimetric analyses, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The basicity of the catalysts was assessed using carbon dioxide temperature-programmed desorption (CO2-TPD). The results confirm that the support material plays a critical role in catalyst performance; in particular, the presence of weak basic sites, due to magnesium addition, improved selectivity to propylene and reduced coke formation. Catalytic pellets of Sn-Pt supported on macroporous sepiolite or sepiolite and bentonite-modified mesoporous alumina performed comparably with propane conversion very close to thermodynamic equilibrium and selectivity to propylene above 95%. The latter support led to improved stability and was regenerated at milder temperatures, making it suitable for industrial applications.
Collapse
Affiliation(s)
- Giovanni Festa
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ana Serrano-Lotina
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, C/ Marie Curie 2. 28049 Madrid, Spain
| | - Eugenio Meloni
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Raquel Portela
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, C/ Marie Curie 2. 28049 Madrid, Spain
| | - Concetta Ruocco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Marco Martino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Vincenzo Palma
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
2
|
Cholach A. Catalytic activity of γ-Al 2O 3(110) in the NO + H 2 reaction: a DFT study. Phys Chem Chem Phys 2023; 25:24686-24695. [PMID: 37668017 DOI: 10.1039/d3cp02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this work, the interaction of the surface of γ-Al2O3(110) with NO and H2 was studied using density functional theory calculations. Free γ-Al2O3(110) adsorbs NO and binds H atoms, but repels the H2 molecule. A triplet of low-coordinated OII-AlIII-OII atoms provides the catalytic activity of γ-Al2O3(110) along the path: (i) the adsorption of NO/AlIII is followed by the binding of H2 to form a hydroxylamine derivative NHOH through an intermediate NO/AlIII + 2 × H/OII complex; (ii) recombination of NHOH with the release of N2 through an intermediate NHOH/AlIII + NHOH/AlIV or adsorption of NO followed by the release of N2O through the intermediate NHOH/AlIII + NO/AlIV; the pathway ends with the regeneration of γ-Al2O3(110). The calculated adsorption heats ensure the diffusion of H atoms from the deposited Pt to the surface (110), initiating the formation of the NH2/AlIII + H/OII complex, which releases NH3 endothermically and is stable enough to inhibit stage (ii) of the above reaction pathway. An excess of O2 in the NO + H2 mixture excludes H/Pt and eliminates inhibition. The formation of oxynitrides is suppressed, but not excluded by more exothermic surface processes. The N-doped conductivity of bulk and surface oxynitrides Al32O47N and the dependence of the heat of adsorption of H atoms on the band gap width were revealed, which suggests a relationship between the band gap width and catalytic activity.
Collapse
Affiliation(s)
- Alexander Cholach
- Boreskov Institute of Catalysis, Akademik Lavrentiev Ave 5, Russian Federation.
| |
Collapse
|
3
|
Conrad MA, DeLine JE, Miller JT. High-Temperature Conversion of Olefins to Liquid Hydrocarbons on γ-Al 2O 3. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Matthew A. Conrad
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jaiden E. DeLine
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Effect of yttrium on catalytic performance of Y-doped TiO2 catalysts for propane dehydrogenation. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
5
|
Zhao Q, Yamamoto M, Yamazaki K, Nishihara H, Crespo-Otero R, Di Tommaso D. The carbon chain growth during the onset of CVD graphene formation on γ-Al 2O 3 is promoted by unsaturated CH 2 ends. Phys Chem Chem Phys 2022; 24:23357-23366. [PMID: 36165844 DOI: 10.1039/d2cp01554d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical vapor deposition of methane onto a template of alumina (Al2O3) nanoparticles is a prominent synthetic strategy of graphene meso-sponge, a new class of nano porous carbon materials consisting of single-layer graphene walls. However, the elementary steps controlling the early stages of graphene growth on Al2O3 surfaces are still not well understood. In this study, density functional theory calculations provide insights into the initial stages of graphene growth. We have modelled the mechanism of CH4 dissociation on the (111), (110), (100), and (001) γ-Al2O3 surfaces. Subsequently, we have considered the reaction pathway leading to the formation of a C6 ring. The γ-Al2O3(110) and γ-Al2O3(100) are both active for CH4 dissociation, but the (100) surface has higher catalytic activity towards the carbon growth reaction. The overall mechanism involves the formation of the reactive intermediate CH2* that then can couple to form CnH2n* (n = 2-6) intermediates with unsaturated CH2 ends. The formation of these species, which are not bound to the surface-active sites, promotes the sustained carbon growth in a nearly barrierless process. Also, the short distance between terminal carbon atoms leads to strong interactions, which might lead to the high activity between unsaturated CH2* of the hydrocarbon chain. Analysis of the electron localization and geometries of the carbon chains reveals the formation of C-Al-σ bonds with the chain growing towards the vacuum rather than C-Al-π bonds covering the γ-Al2O3(100) surface. This growth behaviour prevents catalyst poisoning during the initial stage of graphene nucleation.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Masanori Yamamoto
- Advanced Institute for Materials Research (WPI-AIMR)/Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Kaoru Yamazaki
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research (WPI-AIMR)/Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Rachel Crespo-Otero
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
6
|
Wang Y, Pei C, Wang X, Sun G, Zhao ZJ, Gong J. The role of pentacoordinate Al3+ sites of Pt/Al2O3 catalysts in propane dehydrogenation. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Matveyeva AN, Omarov SO, Nashchekin AV, Popkov VI, Murzin DY. Catalyst supports based on ZnO-ZnAl 2O 4 nanocomposites with enhanced selectivity and coking resistance in isobutane dehydrogenation. Dalton Trans 2022; 51:12213-12224. [PMID: 35894679 DOI: 10.1039/d2dt02088b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Development of coking resistant supports and catalysts for hydrocarbons conversion is challenging, especially when using such acidic materials as alumina. Apparently, this problem can be mitigated by using spinels that are less acidic, being, however, thermally stable. In this study, a series of ZnO-ZnAl2O4 nanocomposites with different ZnO loading were prepared by urotropine-nitrate combustion synthesis to be used as supports for isobutane dehydrogenation catalysts. The nanocomposites were characterized by XRD, SEM, N2-physisorption analysis, EDS, H2-TPR, TPD of NH3 and tested in isobutane dehydrogenation. Spinels with small amounts of ZnO displayed higher acidity and specific surface areas than samples with a higher ZnO content (30-40 mol%). At the same time, the maximum activity and the lowest selectivity to by-products (CH4 and C3H6) after 10 min of the reaction were observed for the nanocomposite containing 20 mol% of ZnO. The obtained nanocomposites have demonstrated better resistance to coking compared to commercial alumina.
Collapse
Affiliation(s)
- Anna N Matveyeva
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Shamil O Omarov
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Alexey V Nashchekin
- Federal Joint Research Center "Material science and characterization in advanced technology", Ioffe Institute, Politekhnicheskaya ul. 26, St Petersburg 194021, Russia
| | - Vadim I Popkov
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Dmitry Yu Murzin
- Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Henriksgatan 2, Turku/Åbo 20500, Finland.
| |
Collapse
|
8
|
Kumar A, Kumar N. Advances in transparent polymer nanocomposites and their applications: A comprehensive review. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Atish Kumar
- Department of Industrial and Production Engineering, DR. B. R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Narendra Kumar
- Department of Industrial and Production Engineering, DR. B. R. Ambedkar National Institute of Technology, Jalandhar, India
| |
Collapse
|
9
|
Song S, Yang K, Zhang P, Wu Z, Li J, Su H, Dai S, Xu C, Li Z, Liu J, Song W. Silicalite-1 Stabilizes Zn-Hydride Species for Efficient Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Kun Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Peng Zhang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
10
|
Hu P, Wang S, Zhuo Y. Strengthened CO2 adsorption over Ce/Al-promoted MgO for fast capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Bian W, Shen X, Tan H, Fan X, Liu Y, Lin H, Li Y. The triggering of catalysis via structural engineering at atomic level: Direct propane dehydrogenation on Fe-N3P-C. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zhang H, Jiang Y, Wang G, Tang N, Zhu X, Li C, Shan H. In-depth study on propane dehydrogenation over Al2O3-based unconventional catalysts with different crystal phases. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Castro-Fernández P, Kaushik M, Wang Z, Mance D, Kountoupi E, Willinger E, Abdala PM, Copéret C, Lesage A, Fedorov A, Müller CR. Uncovering selective and active Ga surface sites in gallia-alumina mixed-oxide propane dehydrogenation catalysts by dynamic nuclear polarization surface enhanced NMR spectroscopy. Chem Sci 2021; 12:15273-15283. [PMID: 34976347 PMCID: PMC8635172 DOI: 10.1039/d1sc05381g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Gallia–alumina (Ga,Al)2O3(x : y) spinel-type solid solution nanoparticle catalysts for propane dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1 : 6, 1 : 3, 3 : 1, 1 : 0) using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-edge) as well as 27Al and 71Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or Brønsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization surface enhanced cross-polarization magic angle spinning 15N{27Al} and 15N{71Ga} J coupling mediated heteronuclear multiple quantum correlation NMR experiments using 15N-labelled pyridine as a probe molecule. The latter approach provides unique insights into the nature and relative strength of the surface acid sites as it allows to distinguish contributions from Al and Ga sites to the overall surface acidity of mixed (Ga,Al)2O3 oxides. Notably, we demonstrate that (Ga,Al)2O3 catalysts with a high Al content show a greater relative abundance of four-coordinated Ga sites and a greater relative fraction of weak/medium Ga-based surface Lewis acid sites, which correlates with superior propene selectivity, Ga-based activity, and stability in PDH (due to lower coking). In contrast, (Ga,Al)2O3 catalysts with a lower Al content feature a higher fraction of six-coordinated Ga sites, as well as more abundant Ga-based strong surface Lewis acid sites, which deactivate through coking. Overall, the results show that the relative abundance and strength of Ga-based surface Lewis acid sites can be tuned by optimizing the bulk Ga : Al atomic ratio, thus providing an effective measure for a rational control of the catalyst performance. Coordination geometry and Lewis acidity of Ga and Al (bulk and surface) sites in mixed oxide gallia–alumina nanoparticles is correlated with the performance in propane dehydrogenation.![]()
Collapse
Affiliation(s)
| | - Monu Kaushik
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Zhuoran Wang
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Deni Mance
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Evgenia Kountoupi
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Anne Lesage
- High-Field NMR Center of Lyon, CNRS, ENS Lyon, Université Lyon1 UMR 5082 F-69100 Villeurbanne France
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich CH-8092 Zürich Switzerland
| |
Collapse
|
14
|
Wang G, Yan Y, Zhang X, Gao X, Xie Z. Three-Dimensional Porous Hexagonal Boron Nitride Fibers as Metal-Free Catalysts with Enhanced Catalytic Activity for Oxidative Dehydrogenation of Propane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangming Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China
| | - Yao Yan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China
| | - Xuefei Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zailai Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China
| |
Collapse
|
15
|
Sharma L, Jiang X, Wu Z, DeLaRiva A, Datye AK, Baltrus J, Rangarajan S, Baltrusaitis J. Atomically Dispersed Tin-Modified γ-alumina for Selective Propane Dehydrogenation under H 2S Co-feed. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lohit Sharma
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Xiao Jiang
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew DeLaRiva
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - John Baltrus
- U. S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
16
|
Cheng F, Duan X, Xie K. Dry Reforming of CH 4 /CO 2 by Stable Ni Nanocrystals on Porous Single-Crystalline MgO Monoliths at Reduced Temperature. Angew Chem Int Ed Engl 2021; 60:18792-18799. [PMID: 34101335 DOI: 10.1002/anie.202106243] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/06/2021] [Indexed: 11/05/2022]
Abstract
Dry reforming of CH4 /CO2 provides a promising and economically feasible route for the large-scale carbon fixation; however, the coking and sintering of catalysts remain a fundamental challenge. Here we stabilize single-crystalline Ni nanoparticles at the surface of porous single-crystalline MgO monoliths and show the quantitative production of syngas from dry reforming of CH4 /CO2 . We show the complete conversion of CH4 /CO2 even only at 700 °C with excellent performance durability after a continuous operation of 500 hours. The well-defined and catalytically active Ni-MgO interfaces facilitate the reforming reaction and enhance the coking resistance. Our findings would enable an industrially and economically viable path for carbon reclamation, and the "Nanocrystal On Porous Single-crystalline Monoliths" technique could lead to stable catalyst designs for many challenging reactions.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyun Duan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
17
|
Cheng F, Duan X, Xie K. Dry Reforming of CH
4
/CO
2
by Stable Ni Nanocrystals on Porous Single‐Crystalline MgO Monoliths at Reduced Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fangyuan Cheng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiuyun Duan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
18
|
Lian Z, Si C, Jan F, Zhi S, Li B. Coke Deposition on Pt-Based Catalysts in Propane Direct Dehydrogenation: Kinetics, Suppression, and Elimination. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00331] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zan Lian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Chaowei Si
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - ShuaiKe Zhi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Bo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| |
Collapse
|
19
|
Docherty SR, Rochlitz L, Payard PA, Copéret C. Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach. Chem Soc Rev 2021; 50:5806-5822. [PMID: 33972978 PMCID: PMC8111541 DOI: 10.1039/d0cs01424a] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The selective conversion of light alkanes (C2–C6 saturated hydrocarbons) to the corresponding alkene is an appealing strategy for the petrochemical industry in view of the availability of these feedstocks, in particular with the emergence of Shale gas. Here, we present a review of model dehydrogenation catalysts of light alkanes prepared via surface organometallic chemistry (SOMC). A specific focus of this review is the use of molecular strategies for the deconvolution of complex heterogeneous materials that are proficient in enabling dehydrogenation reactions. The challenges associated with the proposed reactions are highlighted, as well as overriding themes that can be ascertained from the systematic study of these challenging reactions using model SOMC catalysts. Alkane dehydrogenation over heterogeneous catalysts has attracted renewed attention in recent years. Here, well-defined catalysts based on isolated metal sites and supported Pt-alloys prepared via SOMC are discussed and compared to classical systems.![]()
Collapse
Affiliation(s)
- Scott R Docherty
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Pierre-Adrien Payard
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| |
Collapse
|
20
|
Xie Z, Li Z, Tang P, Song Y, Zhao Z, Kong L, Fan X, Xiao X. The effect of oxygen vacancies on the coordinatively unsaturated Al-O acid-base pairs for propane dehydrogenation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Lin G, Su Y, Duan X, Xie K. High-Density Lewis Acid Sites in Porous Single-Crystalline Monoliths to Enhance Propane Dehydrogenation at Reduced Temperatures. Angew Chem Int Ed Engl 2021; 60:9311-9315. [PMID: 33569871 DOI: 10.1002/anie.202100244] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Indexed: 11/11/2022]
Abstract
The non-oxidative dehydrogenation of propane to propylene plays an important role in the light-olefin chemical industry. However, the conversion and selectivity remain a fundamental challenge at low temperatures. Here we create and engineer high-density Lewis acid sites at well-defined surfaces in porous single-crystalline Mo2 N and MoN monoliths to enhance the non-oxidative dehydrogenation of propane to propylene. The top-layer Mo ions with unsaturated Mo-N1/6 and Mo-N1/3 coordination structures provide high-density Lewis acid sites at the surface, leading to the effective activation of C-H bonds without the overcracking of C-C bonds during the non-oxidative dehydrogenation of propane. We demonstrate a propane conversion of ≈11 % and a propylene selectivity of ≈95 % with porous single-crystalline Mo2 N and MoN monoliths at 500 °C.
Collapse
Affiliation(s)
- Guoming Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yunqi Su
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xiuyun Duan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China.,Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong, 116023, China
| |
Collapse
|
22
|
Lin G, Su Y, Duan X, Xie K. High‐Density Lewis Acid Sites in Porous Single‐Crystalline Monoliths to Enhance Propane Dehydrogenation at Reduced Temperatures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guoming Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yunqi Su
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiuyun Duan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- Advanced Energy Science and Technology Guangdong Laboratory 29 Sanxin North Road Huizhou Guangdong 116023 China
| |
Collapse
|
23
|
Elucidating the origin of selective dehydrogenation of propane on γ-alumina under H2S treatment and co-feed. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Batchu SP, Wang HL, Chen W, Zheng W, Caratzoulas S, Lobo RF, Vlachos DG. Ethane Dehydrogenation on Single and Dual Centers of Ga-modified γ-Al 2O 3. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03536] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sai Praneet Batchu
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation and RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19716, United States of America
| | - Hsuan-Lan Wang
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation and RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19716, United States of America
| | - Weiqi Chen
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation and RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19716, United States of America
| | - Weiqing Zheng
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation and RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19716, United States of America
| | - Stavros Caratzoulas
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation and RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19716, United States of America
| | - Raul F. Lobo
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation and RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19716, United States of America
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation and RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19716, United States of America
| |
Collapse
|
25
|
Zhao D, Lund H, Rodemerck U, Linke D, Jiang G, Kondratenko EV. Revealing fundamentals affecting activity and product selectivity in non-oxidative propane dehydrogenation over bare Al 2O 3. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01980a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A detailed study was carried out to elucidate the factors affecting the activity and, particularly, selectivity of bare Al2O3 in the non-oxidative propane dehydrogenation (PDH) to propene under industrially relevant conditions.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum, Beijing
- Beijing
- P. R. China
- Leibniz-Institut für Katalyse e.V
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V
- D-18059 Rostock
- Germany
| | - Uwe Rodemerck
- Leibniz-Institut für Katalyse e.V
- D-18059 Rostock
- Germany
| | - David Linke
- Leibniz-Institut für Katalyse e.V
- D-18059 Rostock
- Germany
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum, Beijing
- Beijing
- P. R. China
| | | |
Collapse
|
26
|
Otroshchenko T, Jiang G, Kondratenko VA, Rodemerck U, Kondratenko EV. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem Soc Rev 2021; 50:473-527. [DOI: 10.1039/d0cs01140a] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of propane or isobutane from natural/shale gas into propene or isobutene, which are indispensable for the synthesis of commodity chemicals, is an important environmentally friendly alternative to oil-based cracking processes.
Collapse
Affiliation(s)
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum, Beijing
- Beijing
- P. R. China
| | | | - Uwe Rodemerck
- Leibniz-Institut für Katalyse e.V
- D-18059 Rostock
- Germany
| | | |
Collapse
|