1
|
Lopes EF, Dietl MC, Ziegler B, Rudolph M, Barcellos T, Oeser T, Lüdtke DS, Hashmi ASK. Gold Meets Selenium: Dual Activation of Selenium-Containing Propargyl Alcohols Towards the Synthesis of 2H-Chromenes and Mechanistic Insights. Chemistry 2024; 30:e202402426. [PMID: 39158373 DOI: 10.1002/chem.202402426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Herein, we report the synthesis of seleno-substituted chromenes from selenoalkynes and phenols. In this cascade reaction, the applied gold catalyst not only functions as a π-acid, but also as a Lewis acid, enabling the propargylic substitution in the first step to connect the oxygen carbon bond. Under the optimal reaction condition a total of 26 chromenes were accessible by this modular access. During scale up experiments, the hydrolysis of the vinylselenium substructure to the corresponding chromenones was observed. By revisiting the electron-rich starting materials, four chromenones were produced following a one-pot reaction using a single gold catalyst. To better understand the interaction of gold and selenium, a series of nuclear magnetic resonance studies and high-resolution mass spectrometry studies were performed, which led to the proposal of a mechanism for this transformation.
Collapse
Affiliation(s)
- Eric F Lopes
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Martin C Dietl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Benjamin Ziegler
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products, Universidade de Caxias do Sul, Caxias do Sul, RS, 95070-560, Brazil
| | - Thomas Oeser
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
Meher NK, Suryavansi M, Geetharani K. Regioselective Hydroboration of Unsymmetrical Internal Alkynes Catalyzed by a Cobalt Pincer-NHC Complex. Org Lett 2024; 26:5862-5867. [PMID: 38935048 DOI: 10.1021/acs.orglett.4c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Highly regioselective hydroboration of unsymmetrical internal alkynes remains a significant challenge for synthesizing valuable alkenylboronate esters. Herein, we describe an easily synthesizable pincer NHC-based Co complex as a catalyst for the cis-α selective hydroboration of unactivated internal alkynes and the cis-β selective hydroboration of activated internal alkynes with pinacolborane. The reaction showcases high chemo-, regio-, and stereoselectivity, and the catalyst displays high efficiency and very low loading under base-free reaction conditions. The reaction scope was demonstrated by alkynes having a variety of functional groups. The mechanistic studies suggest a feasible Co-boryl intermediate to explain the unusual regioselectivity.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Maruti Suryavansi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Li G, Li Y, Sun P, Huang J, Xu T, Zeng F, Hu XP. Copper-Catalyzed Difunctionalization of Propargylic Carbonates through Tandem Nucleophilic Substitution/Boroprotonation. Org Lett 2024; 26:4443-4450. [PMID: 38772011 DOI: 10.1021/acs.orglett.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Highly functionalized organic molecules are in high demand, but their preparation is challenging. Copper-catalyzed transformation of alkynyl- and allenyl-containing substrates has emerged as a powerful tool to achieve this objective. Herein, an efficient copper-catalyzed difunctionalization of propargylic carbonates through tandem nucleophilic substitution/boroprotonation has been developed, affording the formation of thiol-, selenium-, and boron-functionalized alkenes with high yield and stereoselectivity. Two distinct catalytic mechanisms involving a single reaction without any requirement of catalyst change were successfully demonstrated.
Collapse
Affiliation(s)
- Guiqin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Yahui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Peidong Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Jingwen Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
4
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
5
|
Zimba HC, Baldassari LL, Moro AV. A copper-catalysed one-pot hydroboration/azidation/cycloaddition reaction of alkynes. Org Biomol Chem 2022; 20:6239-6244. [PMID: 35611798 DOI: 10.1039/d2ob00635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report our study on the development of a catalytic one-pot process, showing the challenges and advantages encountered all over the way. At the end, we developed a regioselective, environmentally friendly, and operationally simple method to explore the reactivity of functionalized propargylic alkynes through three copper-catalysed reactions in a single reaction vessel. The sequence consisted of a hydroboration, azidation, and 1,3-dipolar cycloaddition and led to the regioselective formation of vinyl 1,2,3-triazoles in good yields.
Collapse
Affiliation(s)
- Hamilton C Zimba
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| | - Lucas L Baldassari
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| | - Angélica V Moro
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Ding H, Gao W, Yu T, Wang Z, Gou F, Ding S. Hydroboration and Diboration of Internal Alkynes under Iridium Catalysis. J Org Chem 2022; 87:1526-1536. [PMID: 34995462 DOI: 10.1021/acs.joc.1c02315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here we demonstrate the feasibility and efficiency of simple iridium-based catalytic systems in the synthesis of multisubstituted alkenyl boronates from internal alkynes with high selectivities. A variety of alkynes were smoothly decorated with HBpin under a mild [Ir(cod)Cl]2/dppm/acetone condition to afford trisubstituted alkenyl boronic esters with up to >99:1 regioselectivity. The diboration reaction could effectively occur in the presence of [Ir(cod)Cl]2/DCM. Plausible mechanisms were provided to illustrate these two catalytic processes, in which the intrinsic functional group of the alkyne was supposed to be important in facilitating these reactions as well as the regioselectivity.
Collapse
Affiliation(s)
- Huan Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuqi Gou
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Rej S, Das A, Panda TK. Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100950] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Supriya Rej
- Institut für Chemie Technische Universität Berlin Berlin, Strasse des 17. Juni 115 10623 Berlin Germany
| | - Amrita Das
- Department of Applied Chemistry Faculty of Engineering Osaka University 565-0871 Suita Osaka Japan
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy Telangana India
| |
Collapse
|