1
|
Zhao Z, Zhang Z, Meng Q, Chen B, Song J, Liu H, Han B. Aerobic Oxidative Cleavage of C(OH)-C Bonds to Produce Aromatic Aldehydes Catalyzed by Cu I -1,10-phenanthroline Complex. CHEMSUSCHEM 2023; 16:e202300373. [PMID: 37258454 DOI: 10.1002/cssc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Effective cleavage and functionalization of C(OH)-C bonds is of great importance for the production of value-added chemicals from renewable biomass resources such as carbohydrates, lignin and their derivatives. The efficiency and selectivity of oxidative cleavage of C(OH)-C bonds are hindered by their inert nature and various side reactions associated with the hydroxyl group. The oxidative conversion of secondary alcohols to produce aldehydes is particularly challenging because the generated aldehydes tend to be over-oxidized to acids or the other side products. Noble-metal based catalysts are necessary to get satisfactory aldehyde yields. Herein, for the first time, the efficient aerobic oxidative conversion of secondary aromatic alcohols into aromatic aldehydes is reported using non-noble metal catalysts and environmentally benign oxygen, without any additional base. It was found that CuI -1,10-phenanthroline (Cu-phen) complex showed outstanding performance for the reactions. The C(OH)-C bonds of a diverse array of aromatic secondary alcohols were effectively cleaved and functionalized, selectively affording aldehydes with excellent yields. Detailed mechanism study revealed a radical mediated pathway for the oxidative reaction. We believe that the findings in this work will lead to many explorations in non-noble metal catalyzed oxidative reactions.
Collapse
Affiliation(s)
- Ziwei Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Jinliang Song
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Najafishirtari S, Friedel Ortega K, Douthwaite M, Pattisson S, Hutchings GJ, Bondue CJ, Tschulik K, Waffel D, Peng B, Deitermann M, Busser GW, Muhler M, Behrens M. A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry 2021; 27:16809-16833. [PMID: 34596294 PMCID: PMC9292687 DOI: 10.1002/chem.202102868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/15/2023]
Abstract
Selective oxidation of higher alcohols using heterogeneous catalysts is an important reaction in the synthesis of fine chemicals with added value. Though the process for primary alcohol oxidation is industrially established, there is still a lack of fundamental understanding considering the complexity of the catalysts and their dynamics under reaction conditions, especially when higher alcohols and liquid-phase reaction media are involved. Additionally, new materials should be developed offering higher activity, selectivity, and stability. This can be achieved by unraveling the structure-performance correlations of these catalysts under reaction conditions. In this regard, researchers are encouraged to develop more advanced characterization techniques to address the complex interplay between the solid surface, the dissolved reactants, and the solvent. In this mini-review, we report some of the most important approaches taken in the field and give a perspective on how to tackle the complex challenges for different approaches in alcohol oxidation while providing insight into the remaining challenges.
Collapse
Affiliation(s)
- Sharif Najafishirtari
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| | - Mark Douthwaite
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | - Samuel Pattisson
- Cardiff Catalysis InstituteCardiff UniversityCF10 3ATCardiffUnited Kingdom
| | | | - Christoph J. Bondue
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Kristina Tschulik
- Faculty of Chemistry and BiochemistryLab. of Electrochemistry & Nanoscale MaterialsRuhr-University BochumUniversitätsstraße. 150, ZEMOS 1.4144780BochumGermany
| | - Daniel Waffel
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Baoxiang Peng
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Michel Deitermann
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - G. Wilma Busser
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Martin Muhler
- Faculty of Chemistry and BiochemistryLab. of Industrial ChemistryRuhr-University BochumUniversitätsstraße 150, NBCF 04 / 69044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Straße 224118KielGermany
| |
Collapse
|