1
|
Du Z, Li Y, Liu Y, Shi T. Molecular Insights into Bifunctional Ambruticin DH3 for Substrate Specificity and Catalytic Mechanism. Chemistry 2023; 29:e202203420. [PMID: 36464909 DOI: 10.1002/chem.202203420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Dehydratase (DH), a domain located at polyketide synthase (PKS) modules, commonly catalyzes the dehydration of β-hydroxy to an α,β-unsaturated acyl intermediate. As a unique bifunctional dehydratase, AmbDH3 (the DH domain of module 3 of the ambruticin PKS) is verified to be responsible for both dehydration and the following pyran-forming cyclization. Besides, in vitro studies showed that its catalytic efficiency varies with different chiral substrates. However, the detailed molecular mechanism of AmbDH3 remains unclear. In this work, the structural rationale for the substrate specificity (2R/2S- and 6R/6S-substrates) in AmbDH3 was elucidated and the complete reaction pathways including dehydration and cyclization were presented. Both MD simulations and binding free energy calculations indicated AmbDH3 had a stronger preference for 2R-substrates (2R6R-2, 2R6S-3) than 2S-substrates (2S6R-1), and residue H51 and G61 around the catalytic pocket were emphasized by forming stable hydrogen bonds with 2R-substrates. In addition, AmbDH3's mild tolerance at C6 was explained by comparison of substrate conformation and hydrogen bond network in 6S- and 6R-substrate systems. The QM/MM results supported a consecutive one-base dehydration and cyclization mechanism for 2R6S-3 substrate with the energy barrier of 25.2 kcal mol-1 and 24.5 kcal mol-1 , respectively. Our computational results uncover the substrate recognition and catalytic process of the first bifunctional dehydratase-cyclase AmbDH3, which will shed light on the application of multifunctional DH domains in PKSs for diverse natural product analogs and benefit the chemoenzymatic synthesis of stereoselective pyran-containing products.
Collapse
Affiliation(s)
- Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongzhen Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yihan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ting Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
QM/MM study of the [4Fe-4S]-dependent (R)-2-hydroxyisocaproyl-CoA dehydratase: Dehydration via a redox pathway with an α-carbonyl radical intermediate. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|