1
|
Zhou L, Liu Y, Shi H, Qing Y, Chen C, Shen L, Zhou M, Li B, Lin H. Molecular oxygen activation: Innovative techniques for environmental remediation. WATER RESEARCH 2024; 250:121075. [PMID: 38159543 DOI: 10.1016/j.watres.2023.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Molecular oxygen as a green, non-toxic, and inexpensive oxidant has displayed numerous advantages compared with other oxidants for more sustainable and environmentally benign pollutant degradation. Molecular oxygen activation stands as a groundbreaking approach in advanced oxidation processes, offering efficient environmental remediation with minimal environmental impact with the production of high-oxidation reactive oxygen species (ROS). The adaptability and energy efficiency of molecular oxygen activation significantly contribute to the progression of sustainable water remediation technologies. This review meticulously explores the principles and mechanisms of molecular oxygen activation, shedding light on the diverse ROS production pathways. Subsequently, this review comprehensively details contemporary activation approaches, including photocatalytic activation, electrocatalytic activation, piezoelectric activation, and photothermal activation, explicating their distinct activation mechanisms. Additionally, it delves into the promising applications of molecular oxygen activation in the degradation of water pollutants, primary air pollutants, and volatile organic compounds, providing an in-depth analysis of the associated degradation pathways and mechanisms. Moreover, this review also addresses the imminent challenges and emerging opportunities in environmental remediation. It is envisioned that this comprehensive analysis will spur ongoing exploration and innovation in the use of molecular oxygen activation for environmental remediation and beyond.
Collapse
Affiliation(s)
- Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Wang S, Song D, Liao L, Li M, Li Z, Zhou W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv Colloid Interface Sci 2024; 324:103088. [PMID: 38244532 DOI: 10.1016/j.cis.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BiOCl materials have received much attention because of their unique optical and electrical properties. Still, their unsatisfactory catalytic performance has been troubling researchers, limiting the application of BiOCl-based photocatalysts. Therefore, many researchers have studied the adjustment of BiOCl-based materials to enhance photocatalytic efficiency. This review focuses on surface and interface engineering strategies for boosting the photocatalytic performance of BiOCl-based nanomaterials, including forming oxygen vacancy defects, constructing metal/BiOCl, and the fabrication of semiconductor/BiOCl nanocomposites. The photocatalytic applications of the above composites are also concluded in photodegradation of aqueous pollutants, photocatalytic NO removal, photo-induced H2 production, and CO2 reduction. Special emphasis has been given to the modification methods of BiOCl and photocatalytic mechanisms to provide a more detailed understanding for researchers in the fields of energy conversion and materials sciences.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Dongxue Song
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Mingxia Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
3
|
Li X, Mai H, Lu J, Wen X, Le TC, Russo SP, Winkler DA, Chen D, Caruso RA. Rational Atom Substitution to Obtain Efficient, Lead-Free Photocatalytic Perovskites Assisted by Machine Learning and DFT Calculations. Angew Chem Int Ed Engl 2023; 62:e202315002. [PMID: 37942716 DOI: 10.1002/anie.202315002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Inorganic lead-free halide perovskites, devoid of toxic or rare elements, have garnered considerable attention as photocatalysts for pollution control, CO2 reduction and hydrogen production. In the extensive perovskite design space, factors like substitution or doping level profoundly impact their performance. To address this complexity, a synergistic combination of machine learning models and theoretical calculations were used to efficiently screen substitution elements that enhanced the photoactivity of substituted Cs2 AgBiBr6 perovskites. Machine learning models determined the importance of d10 orbitals, highlighting how substituent electron configuration affects electronic structure of Cs2 AgBiBr6 . Conspicuously, d10 -configured Zn2+ boosted the photoactivity of Cs2 AgBiBr6 . Experimental verification validated these model results, revealing a 13-fold increase in photocatalytic toluene conversion compared to the unsubstituted counterpart. This enhancement resulted from the small charge carrier effective mass, as well as the creation of shallow trap states, shifting the conduction band minimum, introducing electron-deficient Br, and altering the distance between the B-site cations d band centre and the halide anions p band centre, a parameter tuneable through d10 configuration substituents. This study exemplifies the application of computational modelling in photocatalyst design and elucidating structure-property relationships. It underscores the potential of synergistic integration of calculations, modelling, and experimental analysis across various applications.
Collapse
Affiliation(s)
- Xuying Li
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Junlin Lu
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaoming Wen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Biochemistry and Chemistry, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3042, Australia
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Li W, Qin L, Wang Z, Xu G, Zheng H, Zhou L, Chen Z. Efficient Porous Carbon Nitride/Ag3PO4 Photocatalyst for Selective Oxidation of Amines to Imines: Z-scheme Heterojunction and Interfacial Adsorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Zhang L, Dai L, Li X, Yu W, Li S, Guan J. 3D structured TiO 2-based aerogel photocatalyst for the high-efficiency degradation of toluene gas. NEW J CHEM 2022. [DOI: 10.1039/d1nj05395g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3D TiO2-based aerogel is prepared that improves the mass-transfer efficiency of the gas–solid reaction for the high-efficiency degradation of toluene gas.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, People's Republic of China
| | - Li Dai
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, People's Republic of China
| | - Xueying Li
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, People's Republic of China
| | - Wei Yu
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, People's Republic of China
| | - Shijie Li
- Innovation & Application Institute, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Jie Guan
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, People's Republic of China
| |
Collapse
|
6
|
Guo KK, Yang YL, Dong SM, Li FY, Jiang XY, Xu L. pH-Controlled assembly of [ZnW 12O 40] 6--based hybrids from a 0D dimer to a 2D network: synthesis, crystal structure, and photocatalytic performance in transformation of toluene into benzaldehyde. Dalton Trans 2021; 50:17308-17318. [PMID: 34787158 DOI: 10.1039/d1dt02618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalate-based organic-inorganic hybrids have attracted considerable attention due to their fascinating structures and wide application prospects. In this work, using the same building blocks, ligands and metal ions (ZnW12O406-(ZnW12), 2,2'-bipyridine (2,2'-bipy), and Cu2+), we synthesized three new POM-based hybrids by controlling the pH values of the reaction systems. These three compounds {(Zn0.6(H2)0.4W12O40)[Cu(2,2'-bipy)(H2O)][Cu(2,2'-bipy)(H2O)2][Cu(2,2'-bipy)(H2O)3]}2·6H2O (1), (Me4N)2{ZnW12O40[Cu(2,2'-bipy)(H2O)][Cu(2,2'-bipy)(H2O)3]}·5H2O (2), and {(Zn0.5(H2)0.5W12O40)[Cu(2,2'-bipy)][Cu(2,2'-bipy)(H2O)][Cu(2,2'-bipy)(H2O)2]}·5H2O (3) have been structurally characterized by single-crystal X-ray diffraction. Compound 1 appears as a dimeric cluster structure, while compounds 2 and 3 appear as a 1D chain structure and a 2D network, respectively. The semiconducting properties of compounds 1-3 are different, which was demonstrated by band gap (Eg) and photocurrent response measurements. Compound 3 can efficiently catalyze the photooxidation of toluene to benzaldehyde with high selectivity using molecular oxygen as the oxidant component. Moreover, compound 3 was recycled and reused three times without significant degradation in conversion and selectivity. In addition, the mechanism of the photocatalytic reaction was also investigated.
Collapse
Affiliation(s)
- Ke-Ke Guo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Yan-Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Si-Meng Dong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Feng-Yan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Xin-Ye Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|