1
|
Ning Z, Ma Y, Zeng Y, Wang Y, Xi A, Sun WH. Synthesis of low-molecular weight and branched polyethylenes via ethylene polymerization using 9-(arylimino)-5,6,7,8-tetrahydrocyclohepta-pyridylnickel precatalysts. Dalton Trans 2024; 53:15968-15983. [PMID: 39279343 DOI: 10.1039/d4dt02159b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Targeting pour point depressants of low-molecular weight and branched polyethylenes, a series of 9-[2,4-bis(benzhydryl)-6-R-phenylimino]-5,6,7,8-tetrahydro-cycloheptapyridine-nickel complexes (Ni1-Ni10) were developed as efficient precatalysts. Upon activation with either EASC or MAO, all nickel complex precatalysts exhibited high activity [up to 8.12 × 106 g PE (mol of Ni)-1 h-1] with single-site behavior toward ethylene polymerization, producing low-molecular weight and unimodal polyethylenes. The resultant polyethylenes possessed high branching with predominant methyl groups and longer chains, along with either internal vinylene or vinyl end groups. The activities of these complex precatalysts were heavily rationalized on the basis of the electronic and steric influences of their 6-R-substituents, with bromides following the order of Ni5 (F) > Ni4 (Cl) > Ni1 (Me) > Ni2 (Et) > Ni3 (iPr) and chlorides following the order of Ni10 (F) > Ni9 (Cl) > Ni6 (Me) > Ni7 (Et) > Ni8 (iPr). DFT calculations revealed the crucial role of agostic interactions (-Ni⋯H-C(Ph2)) between the nickel metal and the hydrogen atom of the ortho bulky group in achieving high catalytic activity and intramolecular hydrogen bonding with the fluoride atom in producing low Mw PE wax. Moreover, the organic compounds and nickel complexes were well characterized, including representative complexes Ni3 and Ni4, via single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Zhao Ning
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanning Zeng
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Yizhou Wang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Aoqian Xi
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Li Z, Ma Y, Liu T, Zhang Q, Solan GA, Liang T, Sun WH. Exploring fluoride effects in sterically enhanced cobalt ethylene polymerisation catalysts; a combined experimental and DFT study. RSC Adv 2022; 13:14-24. [PMID: 36545290 PMCID: PMC9761560 DOI: 10.1039/d2ra05806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The fluoro-substituted 2,6-bis(arylimino)pyridine dichlorocobalt complexes, [2-{CMeN(2,6-(Ph2CH)2-3,4-F2C6H)}-6-(CMeNAr)C5H3N]CoCl2 (Ar = 2,6-Me2C6H3 Co1, 2,6-Et2C6H3Co2, 2,6-iPr2C6H3Co3, 2,4,6-Me3C6H2Co4, 2,6-Et-4-MeC6H2Co5), were synthesized in good yield from the corresponding unsymmetrical N,N,N'-ligands, L1-L5. Besides characterization of Co1-Co5 by FT-IR spectroscopy, 19F NMR spectroscopy and elemental analysis, the molecular structures of Co2 and Co5 were also determined highlighting the unsymmetrical nature of the terdentate ligand and the pseudo-square pyramidal geometry about the metal center. When either MAO or MMAO were employed as activators, Co1-Co5 were able to achieve a wide range of catalytic activities for ethylene polymerisation. Co5/MAO exhibited the highest activity of the study at 60 °C (7.6 × 106 g PE mol-1 (Co) h-1) which decreased to 3.3 × 106 g PE mol-1 (Co) h-1 at 80 °C. In addition, it was found that the polymerisation activity increased as the steric hindrance imparted by the ortho groups was enhanced (for MMAO: Co3 > Co5 > Co2 > Co1 > Co4), a finding that was supported by DFT calculations. Furthermore, it was shown that particularly high molecular weight polyethylene could be generated (up to 483.8 kg mol-1) when using Co5/MMAO at 30 °C, while narrow dispersities (M w/M n range: 1.8-4.7) and high linearity (T m > 131.4 °C) were a feature of all polymers produced. By comparison of Co3 with its non-fluorinated analogue using experimental data and DFT calculations, the substitution of fluorides at the meta- and para-positions was demonstrated to boost catalytic activity and improve thermal stability.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China,Department of Chemistry, University of LeicesterUniversity RoadLeicester LE1 7RHUK
| | - Tian Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Qiuyue Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Gregory A. Solan
- Department of Chemistry, University of LeicesterUniversity RoadLeicester LE1 7RHUK
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhou 730000China
| |
Collapse
|
3
|
Thermally Stable and Highly Efficient N,N,N-Cobalt Olefin Polymerization Catalysts Affixed with N-2,4-Bis(Dibenzosuberyl)-6-Fluorophenyl Groups. Catalysts 2022. [DOI: 10.3390/catal12121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cobalt(II) chloride N,N,N-pincer complexes, [2-{(2,4-(C15H13)2-6-FC6H2)N=CMe}-6-(ArN=CMe)C5H3N]CoCl2 (Ar = 2,6-Me2C6H3) (Co1), 2,6-Et2C6H3 (Co2), 2,6-i-Pr2C6H3 (Co3), 2,4,6-Me3C6H2 (Co4), 2,6-Et2-4-MeC6H2 (Co5), and [2,6-{(2,4-(C15H13)2-6-FC6H2)N=CMe}2C5H3N]CoCl2 (Co6), each containing at least one N-2,4-bis(dibenzosuberyl)-6-fluorophenyl group, were synthesized in good yield from their corresponding unsymmetrical (L1–L5) and symmetrical bis(imino)pyridines (L6). The molecular structures of Co1 and Co2 spotlighted their distorted square pyramidal geometries (τ5 value range: 0.23–0.29) and variations in steric hindrance offered by the dissimilar N-aryl groups. On activation with either MAO or MMAO, Co1–Co6 all displayed high activities for ethylene polymerization, with levels falling in the order: Co1 > Co4 > Co5 > Co2 > Co3 > Co6. Indeed, the least sterically hindered 2,6-dimethyl Co1 in combination with MAO exhibited a very high activity of 1.15 × 107 g PE mol−1 (Co) h−1 at the operating temperature of 70 °C, which dropped by only 15% at 80 °C and 43% at 90 °C. Vinyl-terminated polyethylenes of high linearity and narrow dispersity were generated by all catalysts, with the most sterically hindered, Co3 and Co6, producing the highest molecular weight polymers [Mw range: 30.26–33.90 kg mol−1 (Co3) and 42.90–43.92 kg mol−1 (Co6)]. In comparison with structurally related cobalt catalysts, it was evident that the presence of the N-2,4-bis(dibenzosuberyl)-6-fluorophenyl groups had a limited effect on catalytic activity but a marked effect on thermal stability.
Collapse
|
4
|
Liu T, Liu M, Ma Y, Solan GA, Liang T, Sun WH. Cobalt catalysts bearing ortho‐(4,4'‐dichlorobenzhydryl) substituents and their use in generating narrowly dispersed polyethylene of high linearity. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tian Liu
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory for Engineering Plastics CHINA
| | - Ming Liu
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory for Engineering Plastics CHINA
| | - Yanping Ma
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory for Engineering Plastics CHINA
| | | | - Tongling Liang
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory for Engineering Plastics CHINA
| | - Wen-Hua Sun
- The Chinese Academy of Sciences Institute of Chemistry No.2, BeiyijieZhongguancun 100190 Beijing CHINA
| |
Collapse
|
5
|
Zheng Y, Jiang S, Liu M, Yu Z, Ma Y, Solan GA, Zhang W, Liang T, Sun WH. High molecular weight PE elastomers through 4,4-difluorobenzhydryl substitution in symmetrical α-diimino-nickel ethylene polymerization catalysts. RSC Adv 2022; 12:24037-24049. [PMID: 36200024 PMCID: PMC9435601 DOI: 10.1039/d2ra04321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The following family of N,N-diaryl-2,3-dimethyl-1,4-diazabutadienes, ArN[double bond, length as m-dash]C(Me)C(Me)[double bond, length as m-dash]NAr (Ar = 2,6-Me2-4-{CH(4-FC6H4)2}C6H2L1, 2-Me-6-Et-4-{CH(4-FC6H4)2}C6H2L2, 2,4-{CH(4-FC6H4)2}2-6-MeC6H2L3, 2,4-{CH(4-FC6H4)2}2-6-EtC6H2L4, 2,4-{CH(4-FC6H4)2}2-6-iPrC6H2L5), each incorporating para-substituted 4,4-difluorobenzhydryl groups but differing in the ortho-pairing, have been synthesized and used as precursors to their respective nickel(ii) bromide complexes, Ni1-Ni5. Compound characterization has been achieved through a combination of FT-IR, multinuclear NMR spectroscopy (1H, 13C, 19F) and elemental analysis. In addition, L1, Ni1 and Ni5 have been structurally characterized with Ni1 and Ni5 revealing similarly distorted tetrahedral geometries about nickel but with distinct differences in the steric protection offered by the ortho-substituents. All nickel complexes, under suitable activation, showed high activity for ethylene polymerization with a predilection towards forming branched high molecular weight polyethylene with narrow dispersity. Notably the most sterically bulky Ni5, under activation with either EtAlCl2, Et2AlCl or EASC, was exceptionally active (0.9-1.0 × 107 g of PE per (mol of Ni) per h) at an operating temperature of 40 °C. Furthermore, the polyethylene generated displayed molecular weights close to one million g mol-1 (M w range: 829-922 kg mol-1) with high branching densities (86-102/1000 carbons) and a selectivity for short chain branches (% Me = 94.3% (EtAlCl2), 87.2% (Et2AlCl), 87.7% (EASC)). Further analysis of the mechanical properties of the polymers produced at 40 °C and 50 °C using Ni5 highlighted the key role played by crystallinity (X c) and molecular weight (M w) on tensile strength (σ b) and elongation at break (ε b). In addition, stress-strain recovery tests reveal these high molecular weight polymers to exhibit characteristics of thermoplastic elastomers (TPEs).
Collapse
Affiliation(s)
- Yuting Zheng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Ming Liu
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhixin Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Wenjuan Zhang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
6
|
Han M, Oleynik I, Ma Y, Oleynik I, Solan G, Hao X, Sun WH. Modulating thermostability and productivity of benzhydryl‐substituted bis(imino)pyridine‐iron C2H4 polymerization catalysts through ortho‐CnH2n‐1 (n = 5, 6, 8, 12) ring size adjustment. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mingyang Han
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory for Engineering Plastics CHINA
| | - Ivan Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN Organic synthesis RUSSIAN FEDERATION
| | - Yanping Ma
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory for Engineering Plastics CHINA
| | - Irina Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN Organic synthesis RUSSIAN FEDERATION
| | - Gregory Solan
- University of Leicester Department of Chemistry UNITED KINGDOM
| | - Xiang Hao
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory for Engineering Plastics CHINA
| | - Wen-Hua Sun
- The Chinese Academy of Sciences Institute of Chemistry No.2, BeiyijieZhongguancun 100190 Beijing CHINA
| |
Collapse
|
7
|
Zhang Q, Zuo Z, Ma Y, Liang T, Yang X, Sun WH. Fluorinated 2,6-Bis(arylimino)pyridyliron Complexes Targeting Bimodal Dispersive Polyethylene; probing chain termination pathway via a combined experimental and DFT study. Dalton Trans 2022; 51:8290-8302. [DOI: 10.1039/d2dt00868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorinated 2,6-bis(arylimino)pyridyl iron (II) complexes, [2-[CMeN{2,4-{(4-FC6H4)2CH}2-6-F}]-6-(CMeNAr)C5H3N]FeCl2 (Ar = 2,6-Me2C6H3 Fe1, 2,6-Et2C6H3 Fe2, 2,6-iPr2C6H3 Fe3, 2,4,6-Me3C6H2 Fe4, and 2,6-Et2-4-MeC6H2 Fe5) and [2-[CMeN{2-{(4-FC6H4)2CH}-4-{(C6H5)CHAr’}-6-F}]-6-(CMeN(2,6-iPr2C6H3))C5H3N] FeCl2 (Ar’ = 3-(4-FC6H4)2CH}2-4-NH2-5-FC6H2 Fe6), being verified with...
Collapse
|
8
|
Han M, Zuo Z, Ma Y, Solan GA, Hu X, Liang T, Sun WH. Bis(imino)-6,7-dihydro-5 H-quinoline-cobalt complexes as highly active catalysts for the formation of vinyl-terminated PE waxes; steps towards inhibiting deactivation pathways through targeted ligand design. RSC Adv 2021; 11:39869-39878. [PMID: 35494135 PMCID: PMC9044648 DOI: 10.1039/d1ra07279j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 02/02/2023] Open
Abstract
A set of five related bis(imino)-6,7-dihydro-5H-quinoline-cobalt(ii) complexes, [2-(ArN = CPh)-8-(NAr)-C9H8N]CoCl2 (Ar = 2,6-Me2C6H3Co1, 2,6-Et2C6H3Co2, 2,6-i-Pr2C6H3Co3, 2,4,6-Me3C6H2Co4, 2,6-Et2-4-MeC6H2Co5), have been synthesized in reasonable yield by the template reaction of cobalt(ii) chloride hexahydrate, 2-benzoyl-6,7-dihydro-5H-quinolin-8-one and the corresponding aniline. The molecular structures of Co1 and Co4 highlight both the differences in the two imino-carbon environments (phenyl-capped chain vs. cyclic) and also the steric properties exerted by the bulky N imine-aryl groups. On pre-treatment with either modified methylaluminoxane (MMAO) or methylaluminoxane (MAO), all complexes proved productive catalysts for the polymerization of ethylene. In particular, Co1/MAO was the most active reaching a very high level of 1.62 × 107 g PE per mol (Co) per h over a 30 minute run time. Owing to the presence of the imino-phenyl substituent, Co1-Co5 were able to exhibit good thermal stability by displaying appreciable catalytic activity at temperatures between 50 and 80 °C, generating polyethylenes with narrow dispersities (M w/M n range: 1.66-3.28). In particular, the least sterically bulky precatalysts, Co1 and Co4 formed polyethylene waxes (M w range: 1.94-5.69 kg per mol) with high levels of vinyl unsaturation as confirmed by high temperature 1H/13C NMR spectroscopy and by IR spectroscopy.
Collapse
Affiliation(s)
- Mingyang Han
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zheng Zuo
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry, University of Leicester, University Road Leicester LE1 7RH UK
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
9
|
Han M, Oleynik II, Ma Y, Oleynik IV, Solan GA, Liang T, Sun W. α,α'‐Bis (imino)‐2,3:5,6‐bis (pentamethylene)pyridines appended with benzhydryl and cycloalkyl substituents: Probing their effectiveness as tunable
N,N,N‐
supports for cobalt ethylene polymerization catalysts. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingyang Han
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing China
- CAS Research/Education Center for Excellence in Molecular Sciences and International School University of Chinese Academy of Sciences Beijing China
| | - Ivan I. Oleynik
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Novosibirsk Russia
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Irina V. Oleynik
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Novosibirsk Russia
| | - Gregory A. Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing China
- Department of Chemistry University of Leicester Leicester UK
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing China
- CAS Research/Education Center for Excellence in Molecular Sciences and International School University of Chinese Academy of Sciences Beijing China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
10
|
Lin W, Zhang L, Solan GA, Ma Y, Liang T, Sun W. Naphthalenyl‐Substituted α,α′‐Bisimino‐2,3 : 5,6‐Bis(pentamethylene)pyridines as Thermally Robust Supports for Iron Ethylene Polymerization Catalysts. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenhua Lin
- School of Textiles Science and Engineering Jiangnan University Wuxi, Jiangsu 214122 China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Liping Zhang
- School of Textiles Science and Engineering Jiangnan University Wuxi, Jiangsu 214122 China
| | - Gregory A. Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry University of Leicester University Road Leicester LE1 7RH UK
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Zhang R, Han M, Oleynik IV, Solan GA, Oleynik II, Ma Y, Liang T, Sun W. Boosting activity, thermostability, and lifetime of iron ethylene polymerization catalysts through
gem
‐dimethyl substitution and incorporation of
ortho
‐cycloalkyl substituents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Randi Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
- CAS Research/Education Center for Excellence in Molecular Sciences University of Chinese Academy of Sciences Beijing China
| | - Mingyang Han
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
- CAS Research/Education Center for Excellence in Molecular Sciences University of Chinese Academy of Sciences Beijing China
| | - Irina V. Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Novosibirsk Russia
| | - Gregory A. Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
- Department of Chemistry University of Leicester Leicester UK
| | - Ivan I. Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Novosibirsk Russia
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
- CAS Research/Education Center for Excellence in Molecular Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
Lin W, Zhang L, Ma Y, Liang T, Sun W. Sterically enhanced 2‐iminopyridylpalladium chlorides as recyclable ppm‐palladium catalyst for Suzuki–Miyaura coupling in aqueous solution. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenhua Lin
- School of Textiles Science and Engineering Jiangnan University Wuxi China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Liping Zhang
- School of Textiles Science and Engineering Jiangnan University Wuxi China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences Beijing China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
13
|
Zhang R, Oleynik IV, Li J, Solan GA, Ma Y, Jin L, Oleynik II, Hu X, Sun W. Integrating Ring‐Size Adjustable Cycloalkyl and Benzhydryl Groups as the Steric Protection in Bis(arylimino)trihydroquinoline‐Cobalt Catalysts for Ethylene Polymerization. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Randi Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- CAS Research/Education Center for Excellence in Molecular Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Irina V. Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Pr. Lavrentjeva 9 Novosibirsk 630090 Russia
| | - Jianqing Li
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Gregory A. Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry University of Leicester University Road Leicester LE1 7RH UK
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Liqun Jin
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Ivan I. Oleynik
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Pr. Lavrentjeva 9 Novosibirsk 630090 Russia
| | - Xinquan Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- CAS Research/Education Center for Excellence in Molecular Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Zhang R, Huang Y, Ma Y, Solan GA, Hu X, Liang T, Sun WH. Thermally resilient cobalt ethylene polymerization catalysts under the joint influence of co-catalyst, gem-dimethyl substitution and ortho-cycloalkyl ring size. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zada M, Guo L, Zhang W, Ma Y, Liang T, Sun W. Rational Design of Cycloheptyl‐Fused Bis(arylimino)pyridyl‐cobalt(II) Precatalysts Adorned with Sterically and Electronically Modified
N
‐Aryls for Enhancing Ethylene Polymerization. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muhammad Zada
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Liwei Guo
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Wenjuan Zhang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Beijing Key Laboratory of Clothing Materials R&D and Assessment Beijing Engineering Research Center of Textile Nanofiber School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wen‐Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|