1
|
Lachguar A, Ye CZ, Kelly SN, Jeanneau E, Del Rosal I, Maron L, Veyre L, Thieuleux C, Arnold J, Camp C. CO 2 cleavage by tantalum/M (M = iridium, osmium) heterobimetallic complexes. Chem Commun (Camb) 2024; 60:7878-7881. [PMID: 38984492 PMCID: PMC11271703 DOI: 10.1039/d4cc02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
A novel Ta/Os heterobimetallic complex, [Ta(CH2tBu)3(μ-H)3OsCp*], 2, is prepared by protonolysis of Ta(CHtBu)(CH2tBu)3 with Cp*OsH5. Treatment of 2 and its iridium analogue [Ta(CH2tBu)3(μ-H)2IrCp*], 1, with CO2 under mild conditions reveal the efficient cleavage of CO2, driven by the formation of a tantalum oxo species in conjunction with CO transfer to the osmium or iridium fragments, to form Cp*Ir(CO)H2 and Cp*Os(CO)H3, respectively. This bimetallic reactivity diverges from more classical CO2 insertion into metal-X (X = metal, hydride, alkyl) bonds.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sheridon N Kelly
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Universite Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| |
Collapse
|
2
|
Lachguar A, Del Rosal I, Maron L, Jeanneau E, Veyre L, Thieuleux C, Camp C. π-Bonding of Group 11 Metals to a Tantalum Alkylidyne Alkyl Complex Promotes Unusual Tautomerism to Bis-alkylidene and CO 2 to Ketenyl Transformation. J Am Chem Soc 2024; 146:18306-18319. [PMID: 38936814 PMCID: PMC11240581 DOI: 10.1021/jacs.4c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A salt metathesis synthetic strategy is used to access rare tantalum/coinage metal (Cu, Ag, Au) heterobimetallic complexes. Specifically, complex [Li(THF)2][Ta(CtBu)(CH2tBu)3], 1, reacts with (IPr)MCl (M = Cu, Ag, Au, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to afford the alkylidyne-bridged species [Ta(CH2tBu)3(μ-CtBu)M(IPr)] 2-M. Interestingly, π-bonding of group 11 metals to the Ta─C moiety promotes a rare alkylidyne alkyl to bis-alkylidene tautomerism, in which compounds 2-M are in equilibrium with [Ta(CHtBu)(CH2tBu)2(μ-CHtBu)M(IPr)] 3-M. This equilibrium was studied in detail using NMR spectroscopy and computational studies. This reveals that the equilibrium position is strongly dependent on the nature of the coinage metal going down the group 11 triad, thus offering a new valuable avenue for controlling this phenomenon. Furthermore, we show that these uncommon bimetallic couples could open attractive opportunities for synergistic reactivity. We notably report an uncommon deoxygenative carbyne transfer to CO2 resulting in rare examples of coinage metal ketenyl species, (tBuCCO)M(IPr), 4-M (M = Cu, Ag, Au). In the case of the Ta/Li analogue 1, the bis(alkylidene) tautomer is not detected, and the reaction with CO2 does not cleanly yield ketenyl species, which highlights the pivotal role played by the coinage metal partner in controlling these unconventional reactions.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Iker Del Rosal
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université de Lyon, 5 Rue de la Doua, Villeurbanne 69100, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| |
Collapse
|
3
|
Pichugov AV, Escomel L, Lassalle S, Petit J, Jabbour R, Gajan D, Veyre L, Fonda E, Lesage A, Thieuleux C, Camp C. Highly Selective and Efficient Perdeuteration of n-Pentane via H/D Exchange Catalyzed by a Silica-Supported Hafnium-Iridium Bimetallic Complex. Angew Chem Int Ed Engl 2024; 63:e202400992. [PMID: 38373040 DOI: 10.1002/anie.202400992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
A Surface OrganoMetallic Chemistry (SOMC) approach is used to prepare a novel hafnium-iridium catalyst immobilized on silica, HfIr/SiO2, featuring well-defined [≡SiOHf(CH2 tBu)2(μ-H)3IrCp*] surface sites. Unlike the monometallic analogous materials Hf/SiO2 and Ir/SiO2, which promote n-pentane deuterogenolysis through C-C bond scission, we demonstrate that under the same experimental conditions (1 bar D2, 250 °C, 3 h, 0.5 mol %), the heterobimetallic catalyst HfIr/SiO2 is highly efficient and selective for the perdeuteration of alkanes with D2, exemplified on n-pentane, without substantial deuterogenolysis (<2 % at 95 % conversion). Furthermore this HfIr/SiO2 catalyst is robust and can be re-used several times without evidence of decomposition. This represents substantial advance in catalytic H/D isotope exchange (HIE) reactions of C(sp3)-H bonds.
Collapse
Affiliation(s)
- Andrey V Pichugov
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Léon Escomel
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Sébastien Lassalle
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Julien Petit
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Ribal Jabbour
- Centre de RMN à Hauts Champs de Lyon CRMN, UMR5082, Université de Lyon, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - David Gajan
- Centre de RMN à Hauts Champs de Lyon CRMN, UMR5082, Université de Lyon, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Emiliano Fonda
- Synchrotron SOLEIL L'Orme des Merisiers, Saint Aubin BP-48, 91192, Gif sur Yvette, France
| | - Anne Lesage
- Centre de RMN à Hauts Champs de Lyon CRMN, UMR5082, Université de Lyon, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| |
Collapse
|
4
|
Wilde T, Murphy F, Smylie CRT, Kennedy AR, Weetman CE. Synthesis and Reactivity of an Aluminium N-heterocyclic Aminal. Chem Asian J 2023:e202301058. [PMID: 38149325 DOI: 10.1002/asia.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
Tethered N-heterocyclic carbenes (NHCs) are an emerging class of ligand, as they feature all the desirable aspects of NHCs (ease of synthesis, high tunabilty) but also enable metal-ligand cooperativity when combined with Lewis acidic metal centres due to the donor-acceptor nature of the complexes formed. Herein we report a simple ethoxy-tethered NHC for the stabilisation of Al(III) hydrides, resulting in the unexpected formation of a bicyclic N-heterocyclic aminal (1). Compound 1 behaves as a metal hydride, capable of reducing benzophenone and carbodiimide to yield compounds 2 and 3, respectively. Furthermore, we show that 1 behaves as an efficient catalyst in the dehydrocoupling of amine-boranes due to the hemi-labile nature of the supporting ligand.
Collapse
Affiliation(s)
- Taylor Wilde
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL
| | - Fáinché Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL
| | - Cooper R T Smylie
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL
| | - Catherine E Weetman
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL
| |
Collapse
|
5
|
Neururer F, Huter K, Seidl M, Hohloch S. Reactivity and Structure of a Bis-phenolate Niobium NHC Complex. ACS ORGANIC & INORGANIC AU 2022; 3:59-71. [PMID: 36748079 PMCID: PMC9896488 DOI: 10.1021/acsorginorgau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
We report the facile synthesis of a rare niobium(V) imido NHC complex with a dianionic OCO-pincer benzimidazolylidene ligand (L 1 ) with the general formula [NbL 1 (N t Bu)PyCl] 1-Py. We achieved this by in situ deprotonation of the corresponding azolium salt [H 3 L 1 ][Cl] and subsequent reaction with [Nb(N t Bu)Py 2 Cl 3 ]. The pyridine ligand in 1-Py can be removed by the addition of B(C6F5)3 as a strong Lewis acid leading to the formation of the pyridine-free complex 1. In contrast to similar vanadium(V) complexes, complex 1-Py was found to be a good precursor for various salt metathesis reactions, yielding a series of chalcogenido and pnictogenido complexes with the general formula [ NbL 1 (N t Bu)Py(EMes)] (E = O (2), S (3), NH (4), and PH (5)). Furthermore, complex 1-Py can be converted to alkyl complex (6) with 1 equiv of neosilyl lithium as a transmetallation agent. Addition of a second equivalent yields a new trianionic supporting ligand on the niobium center (7) in which the benzimidazolylidene ligand is alkylated at the former carbene carbon atom. The latter is an interesting chemically "noninnocent" feature of the benzimidazolylidene ligand potentially useful in catalysis and atom transfer reactions. Addition of mesityl lithium to 1-Py gives the pyridine-free aryl complex 8, which is stable toward "overarylation" by an additional equivalent of mesityl lithium. Electrochemical investigation revealed that complexes 1-Py and 1 are inert toward reduction in dichloromethane but show two irreversible reduction processes in tetrahydrofuran as a solvent. However, using standard reduction agents, e.g., KC8, K-mirror, and Na/Napht, no reduced products could be isolated. All complexes have been thoroughly studied by various techniques, including 1H-, 13C{1H}-, and 1H-15N HMBC NMR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.
Collapse
|
6
|
Lassalle S, Petit J, Falconer RL, Hérault V, Jeanneau E, Thieuleux C, Camp C. Reactivity of Tantalum/Iridium and Hafnium/Iridium Alkyl Hydrides with Alkyl Lithium Reagents: Nucleophilic Addition, Alpha-H Abstraction, or Hydride Deprotonation? Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sébastien Lassalle
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Julien Petit
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Rosalyn L. Falconer
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Valentin Hérault
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1, ESCPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
7
|
Zhan L, Zhu M, Liu L, Wang J, Xie C, Zhang J. Synthesis of MAuAg (M = Ni, Pd, or Pt) and NiAuCu Heterotrimetallic Complexes Ligated by a Tritopic Carbanionic N-Heterocyclic Carbene. Inorg Chem 2021; 60:16035-16041. [PMID: 34648263 DOI: 10.1021/acs.inorgchem.1c01964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heterotrimetallic complexes (NiAuAg, PdAuAg, PtAuAg, and NiAuCu) containing a tritopic N-heterocyclic carbene (NHC) have been synthesized for the first time through the deprotonation and metalation of heterodimetallic complexes and were structurally characterized by single-crystal X-ray diffraction. The carbene character of the donor groups in the tritopic NHC complexes was established on the basis of structural and NMR analyses.
Collapse
Affiliation(s)
- Licheng Zhan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Mingqiu Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Lin Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiwei Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Congyun Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
8
|
Neururer F, Liu S, Leitner D, Baltrun M, Fisher KR, Kopacka H, Wurst K, Daumann LJ, Munz D, Hohloch S. Mesoionic Carbenes in Low- to High-Valent Vanadium Chemistry. Inorg Chem 2021; 60:15421-15434. [PMID: 34590834 PMCID: PMC8527456 DOI: 10.1021/acs.inorgchem.1c02087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/12/2022]
Abstract
We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.
Collapse
Affiliation(s)
- Florian
R. Neururer
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Shenyu Liu
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Daniel Leitner
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Marc Baltrun
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Katherine R. Fisher
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Holger Kopacka
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lena J. Daumann
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Dominik Munz
- Fakultät
NT, Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Stephan Hohloch
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Mörsdorf JM, Wadepohl H, Ballmann J. Reductive Hydrogenation under Single-Site Control: Generation and Reactivity of a Transient NHC-Stabilized Tantalum(III) Alkoxide. Inorg Chem 2021; 60:9785-9795. [PMID: 34111351 DOI: 10.1021/acs.inorgchem.1c01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the most attractive routes for the preparation of reactive tantalum(III) species relies on the efficient salt-free hydrogenolysis of tantalum(V) alkyls or tantalum(V) alkylidenes, a process known as reductive hydrogenation. For silica-crafted tantalum alkyls and alkylidenes, this process necessarily proceeds at well-separated tantalum centers, while related reductive hydrogenations in homogeneous solution commonly involve dimeric complexes. Herein, an NHC scaffold was coordinated to a novel tri(alkoxido)tantalum(V) alkylidene to circumvent the formation of dimers during reductive hydrogenation. Employing this new model system, a key intermediate of the process, namely a hydrido-tantalum alkyl, was isolated for the first time and shown to exhibit a bidirectional reactivity. Upon being heated, the latter complex was found to undergo either an α-elimination or a reductive alkane elimination. In the (overall unproductive) α-elimination step, H2 and the parent alkylidene were regenerated, while the sought-after transient d2-configured tantalum(III) derivative was produced along the reaction coordinate of the reductive alkane elimination. The reactive low-valence metal center was found to rapidly attack one of the NHC substituents via an oxidative C-H activation, which led to the formation of a cyclometalated tantalum(V) hydride. The proposed elemental steps are in line with kinetic data, deuterium labeling experiments, and density functional theory (DFT) modeling studies. DFT calculations also indicated that the S = 0 spin ground state of the Ta(III) center plays a crucial role in the cyclometalation reaction. The cyclometalated Ta(V) hydride was further investigated and reacted with several alkenes and alkynes. In addition to a rich insertion and isomerization chemistry, these studies also revealed that the former hydride may undergo a formal cycloreversion and thus serve as a tantalum(III) synthon, although the original tantalum(III) intermediate is not involved in this process. The latter reactivity was observed upon reaction with internal alkynes and led to the corresponding η2-alkyne derivatives via vinyl intermediates, which rearrange via a remarkable, hitherto unprecedented, hydrogen shift reaction.
Collapse
Affiliation(s)
- Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Charles RM, Brewster TP. H 2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coord Chem Rev 2021; 433:213765. [PMID: 35418712 PMCID: PMC9004596 DOI: 10.1016/j.ccr.2020.213765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The field of heterobimetallic chemistry has rapidly expanded over the last decade. In addition to their interesting structural features, heterobimetallic structures have been found to facilitate a range of stoichiometric bond activations and catalytic processes. The accompanying review summarizes advances in this area since January of 2010. The review encompasses well-characterized heterobimetallic complexes, with a particular focus on mechanistic details surrounding their reactivity applications.
Collapse
Affiliation(s)
- R Malcolm Charles
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| | - Timothy P Brewster
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| |
Collapse
|
11
|
Liu S, Amaro-Estrada JI, Baltrun M, Douair I, Schoch R, Maron L, Hohloch S. Catalytic Deoxygenation of Nitroarenes Mediated by High-Valent Molybdenum(VI)–NHC Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenyu Liu
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | | | - Marc Baltrun
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Del Rosal I, Lassalle S, Dinoi C, Thieuleux C, Maron L, Camp C. Mechanistic investigations via DFT support the cooperative heterobimetallic C-H and O-H bond activation across Ta[double bond, length as m-dash]Ir multiple bonds. Dalton Trans 2021; 50:504-510. [PMID: 33210676 DOI: 10.1039/d0dt03818k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rare heterobimetallic oxidative addition of X-H (X = C, O) bonds is reported. DFT suggests that steric constraints around the bimetallic core play a critical role to synergistically activate C-H bonds across the two metals and thus explains the exceptional H/D exchange catalytic activity of unhindered surface organometallic Ta/Ir species observed experimentally.
Collapse
Affiliation(s)
- Iker Del Rosal
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Sébastien Lassalle
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Chiara Dinoi
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Chloé Thieuleux
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Clément Camp
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
13
|
Petit J, Pavard PA, Camp C. Unusually large ‘yaw’ angle upon coordination of a new bulky unsymmetrical 3-hydroxyadamantyl-functionalized N-heterocyclic carbene ligand to rhodium(i). MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Lassalle S, Jabbour R, Del Rosal I, Maron L, Fonda E, Veyre L, Gajan D, Lesage A, Thieuleux C, Camp C. Stepwise construction of silica-supported tantalum/iridium heteropolymetallic catalysts using surface organometallic chemistry. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Srivastava R, Jakoobi M, Thieuleux C, Quadrelli EA, Camp C. A family of rhodium(i) NHC chelates featuring O-containing tethers for catalytic tandem alkene isomerization-hydrosilylation. Dalton Trans 2020; 50:869-879. [PMID: 33237067 DOI: 10.1039/d0dt03698f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The rhodium complex Rh(HL)(COD)Cl, 1, L being a functionalized N-heterocyclic carbene (NHC) ligand with an oxygen-containing pendant arm, has been used as the entry point to synthesize a series of neutral and cationic Rh(i) O,C chelates. While the Rh-carbene interaction is similar in all these 16-electron complexes, structural analysis reveals that the strength of the Rh-O bond is greatly affected by the nature of the O-donor: R-O- > R-OH > R-OBF3. These subtle changes in the nature of the O-containing tether are found to be responsible for large differences in the alkene hydrosilylation catalytic activity of these compounds: the stronger the Rh-O interaction, the better the catalytic performances. The most active catalyst, [Rh(L)(COD)], 2, demonstrated good catalytic activity under mild reaction conditions for the hydrosilylation of a range of alkene substrates with the industrially relevant non-activated tertiary silane, 1,1,1,3,5,5,5-heptamethyltrisiloxane (MDHM). Furthermore, this complex is an effective catalyst for the selective remote functionalization of internal olefins at room temperature via tandem alkene isomerization-hydrosilylation.
Collapse
Affiliation(s)
- Ravi Srivastava
- Université de Lyon, Institut de Chimie de Lyon, C2P2 UMR 5265 CNRS-UCBL-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | | | | | | | | |
Collapse
|