1
|
Lu J, Li Y, Kuk Y, Choi S, Kim K, Ko C, Bai Z, Ok KM. Bi(SO 4)F·H 2O and Bi(SO 4)(NO 3)·3H 2O: Chemical Substitution-Induced Birefringence Enhancement in Bismuth Sulfates. Inorg Chem 2024; 63:13748-13754. [PMID: 38961705 DOI: 10.1021/acs.inorgchem.4c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Two new Bi(III)-based sulfates, namely, Bi(SO4)F·H2O (BSOF) and Bi(SO4)(NO3)·3H2O (BSNO), have been successfully synthesized through aliovalent replacement of partial [SO4]2- groups with F- and [NO3]- anions, respectively, in the parent structure of Bi2(SO4)3. Such chemical replacement altered the coordination environment of Bi3+ cations, facilitating changes in the structure and optical properties. Notably, the birefringence values of BSOF and BSNO are found to be 4.4 and 15.5 times that of parent Bi2(SO4)3. Further investigation into the structure-property relationship revealed that the birefringence enhancement in BSOF and BSNO is attributed to the improvement of the polarizability anisotropy of Bi3+-centered polyhedra in BSOF and BSNO compared to that of Bi2(SO4)3. In addition, the existence and optimized arrangement of planar [NO3]- groups are also indispensable for further birefringence improvement of the BSNO compound.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Yang Li
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Yunseung Kuk
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Seunghun Choi
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Kyungmo Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Chanhee Ko
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Zhiyong Bai
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
2
|
Yan Z, Fan J, Pan S, Zhang M. Recent advances in rational structure design for nonlinear optical crystals: leveraging advantageous templates. Chem Soc Rev 2024; 53:6568-6599. [PMID: 38809128 DOI: 10.1039/d3cs01136d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nonlinear optical (NLO) crystals that can expand the spectral range of laser outputs have attracted significant attention for their optoelectronic applications. The research progress from the discovery of new single crystal structures to the realization of final device applications involves many key steps and is very time consuming and challenging. Consequently, exploring efficient design strategies to shorten the research period and accelerate the rational design of novel NLO materials has become imperative to address the pressing demand for advanced materials. The recent shift in paradigm toward exploring new NLO crystals involves significant progress from extensive "trial and error" methodologies to strategic approaches. This review proposes the concept of rational structure design for nonlinear optical crystals leveraging advantageous templates. It further discusses their optical characteristics, promising applications as second-order NLO materials, and the relationship between their structure and performance, and highlights urgent issues that need to be addressed in the field of NLO crystals in the future. The review aims to provide ideas and driving impetus to encourage researchers to achieve new breakthroughs in the next generation of NLO materials.
Collapse
Affiliation(s)
- Ziting Yan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbin Fan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Lan Y, Luo H, Wang L, Huang L, Cao L, Dong X, Zou G. Two Short-Wave UV Antimony(III) Sulfates Exhibiting Large Birefringence. Inorg Chem 2024; 63:2814-2820. [PMID: 38265337 DOI: 10.1021/acs.inorgchem.3c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In the present work, we have successfully obtained two new UV antimony-based sulfates, NH4Sb(SO4)2 and Ca2Sb2O(SO4)4, by a conventional hydrothermal method. Interestingly, both compounds share similar structural building blocks, such as SbO4 seesaws and SO4 tetrahedra, yet they endow discrepant birefringence values measured at 546 nm with values of 0.150 and 0.114, respectively, owing to the different distortions of the SbO4 groups with SCALP electrons. Moreover, both compounds display large band gaps (4.32 and 4.43 eV, respectively), so they can be used as short-wavelength UV birefringent materials. Moreover, NH4Sb(SO4)2 is a noncentrosymmetric compound, showing a frequency doubling effect of 0.2 × KDP. Detailed structural analyses and calculations confirm the source of superior optical performance and the reasons for the different birefringence of the two compounds. This work provides ideas for the following discovery of antimony-based optical materials with excellent properties.
Collapse
Affiliation(s)
- Yang Lan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Han Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Luli Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Liu X, Yang YC, Li MY, Chen L, Wu LM. Anisotropic structure building unit involving diverse chemical bonds: a new opportunity for high-performance second-order NLO materials. Chem Soc Rev 2023. [PMID: 38014465 DOI: 10.1039/d3cs00691c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We define the anisotropic structure building unit that encompasses diverse chemical bonds (ABUCB). The ABUCB is highly likely to cause anisotropy in both crystallographic structure and spatial electron distribution, ultimately resulting in enhanced macroscopic optical anisotropy. Accordingly, the (PO3F)2- or (SO3F)- tetrahedron involving the unique P-F or S-F bond serves as such an ABUCB. The distinct chemical bond effectively alters the microscopic nature of the structure building unit, such as polarizability anisotropy, hyperpolarizability, and geometry distortion; this consequently changes the macroscopic second-order nonlinear optical (2nd-NLO) properties of the materials. In this review, we summarize both typical and newly emerged compounds containing ABUCBs. These compounds encompass approximately 90 examples representing six distinct categories, including phosphates, borates, sulfates, silicates, chalcogenides and oxyhalides. Furthermore, we demonstrate that the presence of ABUCBs in DUV/UV NLO compounds contributes to an increase in birefringence and retention of a large band gap, facilitating phase matching in high-energy short-wavelength spectral ranges. On the other hand, the inclusion of ABUCBs in IR NLO compounds offers a feasible method for increasing the band gap and consequently enhancing the larger laser-induced damage threshold. This review consolidates various trial-and-error explorations and presents a novel strategy for designing 2nd-NLO compounds, potentially offering an opportunity for the development of high-performance 2nd-NLO materials.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Yi-Chang Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Meng-Yue Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, People's Republic of China
| | - Li-Ming Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, People's Republic of China
| |
Collapse
|
5
|
Wang W, Wang X, Xu L, Zhang D, Xue J, Wang S, Dong X, Cao L, Huang L, Zou G. Centrosymmetric Rb 2Sb(C 2O 4) 2.5(H 2O) 3 and Noncentrosymmetric RbSb 2(C 2O 4)F 5: Two Antimony (III) Oxalates as UV Optical Materials. Inorg Chem 2023; 62:13148-13155. [PMID: 37532705 DOI: 10.1021/acs.inorgchem.3c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we have successfully synthesized two rubidium antimony (III) oxalates, namely, Rb2Sb(C2O4)2.5(H2O)3 and RbSb2(C2O4)F5, utilizing a low-temperature hydrothermal method. These two compounds share a similar chemical composition, consisting of Sb3+ cations with active lone pair electrons, alkali metal Rb+ ions, and planar π-conjugated C2O42- anions. However, they exhibit different symmetries, Rb2Sb(C2O4)2.5(H2O)3 is centrosymmetric (CS), while RbSb2(C2O4)F5 is noncentrosymmetric (NCS), which should be caused by the presence of F- ions. Notably, the NCS compound, RbSb2(C2O4)F5, demonstrates a moderate second-harmonic generation (SHG) response, approximately 1.3 times that of KH2PO4 (KDP), and exhibits a large birefringence of 0.09 at 546 nm. These characteristics indicate that RbSb2(C2O4)F5 holds promising potential as a nonlinear optical material for ultraviolet (UV) applications. Detailed structural analysis and theoretical calculations confirm that the excellent optical properties arise from the synergistic effects between Sb3+ cations with SCALP and planar π-conjugated [C2O4]2- groups.
Collapse
Affiliation(s)
- Weiyi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xinyue Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Lu Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Die Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Jiale Xue
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Shuyao Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Recent Advances on the Synthesis of Sb(III)-Based Inorganic Ultraviolet Nonlinear Optical Materials. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Long Y, Dong X, Huang L, Zeng H, Lin Z, Zou G. SbHPO 3F: 2D van der Waals Layered Phosphite Exhibiting Large Birefringence. Inorg Chem 2022; 61:16997-17001. [PMID: 36264600 DOI: 10.1021/acs.inorgchem.2c03266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel antimony(III)-based phosphite, SbHPO3F, featuring a unique two-dimensional (2D) van der Waals layered structure, has been successfully designed and synthesized via the simultaneous employment of optically active moieties including SbO3F seesaw and tetrahedral HPO3 groups. Its optimized layered arrangement formed by the alternating connection of 4-membered rings (4-MRs) and 8-MRs endows the title compound with desirable optical properties including a large birefringence and short ultraviolet (UV) cutoff edge, implying that it is a potential UV birefringent material.
Collapse
Affiliation(s)
- Ying Long
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Wu M, Feng J, Xie C, Tudi A, Chu D, Lu J, Pan S, Yang Z. From Phosphate Fluoride to Fluorophosphate: Design of Novel Ultraviolet/Deep-Ultraviolet Nonlinear Optical Materials for BePO 3F with Optical Property Enhancement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39081-39090. [PMID: 35980008 DOI: 10.1021/acsami.2c12001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorine-containing compounds have stimulated the exploration of ultraviolet/deep-ultraviolet nonlinear optical (NLO) materials. Alkali/alkaline-earth metal phosphates are one of the important potential systems as NLO materials, while the common small birefringence limits the phase-matching (PM) ability in the ultraviolet/deep-ultraviolet region. Herein, by applying a "fluorination synergy-induced enhancement of optical property" strategy, novel structures of phosphate fluoride/fluorophosphate in BePO3F with good thermodynamic/dynamic stability and promising NLO-related properties are discovered via performing crystal structure prediction combined with first-principles calculations. BePO3F-I-VI exhibit relatively large birefringence of 0.025, 0.048, 0.049, 0.049, 0.059, and 0.063 at 1064 nm, respectively. Simultaneously, BePO3F-I (Pc) is a new thermodynamically stable phosphate fluoride which possesses a wide band gap (Eg = 8.03 eV), large second-harmonic generation (SHG) coefficient (d11 = 0.67 pm/V, 1.7 × KDP), and the shortest PM wavelength of 292 nm. Other five thermodynamically metastable noncentrosymmetric (NCS) BePO3F structures (II-VI) belong to fluorophosphates and exhibit deep-ultraviolet PM wavelengths of 187, 183, 186, 188, and 196 nm. It reveals that the aligned nonbonding O 2p orbitals of [BeO2F2] and [PO4] units lead to a large SHG coefficient in the phosphate fluoride BePO3F-I. For fluorophosphates (BePO3F-II-VI), the synergy of [BeO3] planar units and [PO3F] units induces relatively large birefringence. Our research results provide an idea for exploring novel high-performance NLO materials.
Collapse
Affiliation(s)
- Mengfan Wu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Feng
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
| | - Congwei Xie
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Lu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shilie Pan
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhang D, Wang Q, Ren L, Cao L, Huang L, Gao D, Bi J, Zou G. Sharp Enhancement of Birefringence in Antimony Oxalates Achieved by the Cation-Anion Synergetic Interaction Strategy. Inorg Chem 2022; 61:12481-12488. [PMID: 35894629 DOI: 10.1021/acs.inorgchem.2c02262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Birefringent materials with large birefringence play an important role in in laser science and technology owing to their ability to modulate polarized light. However, the lack of systematic and effective synthesis strategies severely hinders the development of novel superior birefringent materials. Herein, the cation-anion synergetic interaction strategy was proposed to successfully synthesize two excellent UV birefringent materials, RbSb(C2O4)F2·H2O and [C(NH2)3]Sb(C2O4)F2·H2O. Both compounds feature unprecedented [Sb(C2O4)F2]∞- anionic chains composed of planar π-conjugated [C2O4]2- units and a distorted SbO4F2 complex with stereochemically active lone pairs, which induce a large optical anisotropy. Remarkably, further enhancement of birefringence in [C(NH2)3]Sb(C2O4)F2·H2O was achieved via cation-anion synergetic interactions between the [C(NH2)3]+ cationic groups and [Sb(C2O4)F2]∞- anionic chains. It exhibited a giant birefringence of 0.323@546 nm, twice larger than that of its analogue RbSb(C2O4)F2·H2O (0.162@546 nm). A detailed structural analysis and theoretical calculations revealed that the cation-anion synergetic interaction strategy is an effective strategy for the efficient exploration of superior birefringent materials, which will guide the further exploration of new structure-driven functional materials.
Collapse
Affiliation(s)
- Die Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liying Ren
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
10
|
RbLiZn5(PO4)4 and BaLiZn3(PO4)3: two new zinc orthophosphates with all tetrahedra-based anion frameworks. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
|
12
|
Dong X, Long Y, Huang L, Cao L, Gao D, Bi J, Zou G. Large optical anisotropy differentiation induced by the anion-directed regulation of structures. Inorg Chem Front 2022. [DOI: 10.1039/d2qi02009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The modulation of optical anisotropy for two novel UV birefringent materials [C(NH2)3]2Sb3F3(HPO3)4 and [C(NH2)3]SbFPO4·H2O has been successfully achieved via anion-directing regulation structures.
Collapse
Affiliation(s)
- Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ying Long
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
13
|
Zhou Y, Liu X, Lin Z, Li Y, Ding Q, Liu Y, Chen Y, Zhao S, Hong M, Luo J. Pushing KTiOPO 4-like Nonlinear Optical Sulfates into the Deep-Ultraviolet Spectral Region. Inorg Chem 2021; 60:18950-18956. [PMID: 34881864 DOI: 10.1021/acs.inorgchem.1c02764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurately designing and synthesizing new deep-ultraviolet (deep-UV) nonlinear optical (NLO) crystals that are limited by the so-called "200 nm wall" on their transparency windows remain challenging. On the basis of a bandgap-directed computer-aided material design approach, two new NLO sulfates, KMgSO4F and KZnSO4F, are designed and successfully synthesized. They feature three-dimensional frameworks closely related to the commercial NLO crystal, KTiOPO4 (KTP). Remarkably, the transmittance spectrum based on a single crystal indicates that the transparency window of KZnSO4F is significantly blue-shifted to <190 nm from 350 nm for KTP. The microscopic origin of this significant transparent window blue shift is illustrated well by first-principles calculations. This work pushes the transparency windows of KTP-like NLO sulfates into the deep-UV spectral region for the first time and will pave a prospective way to the accurate design and synthesis of new deep-UV NLO materials.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qingran Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Youchao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
14
|
Wang W, Mei D, Wen S, Wang J, Wu Y. Complex coordinated functional groups: A great genes for nonlinear optical materials. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Ge Y, Wang Q, Yang F, Huang L, Gao D, Bi J, Zou G. Tin Chloride Sulfates A 3Sn 2(SO 4) 3-xCl 1+2x (A = K, Rb, Cs; x = 0, 1) as Multifunctional Optical Materials. Inorg Chem 2021; 60:8322-8330. [PMID: 33990136 DOI: 10.1021/acs.inorgchem.1c01037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The series of alkali-metal tin chloride sulfates A3Sn2(SO4)3-xCl1+2x (A = K, Rb, Cs; x = 0, 1), K3Sn2(SO4)3Cl, Rb3Sn2(SO4)2Cl3, and Cs3Sn2(SO4)2Cl3, were successfully synthesized through an improved mild hydrothermal method. Interestingly, in addition to the cation size effect, the structure-directing effect of anions induces different symmetries in the three title compounds, with K3Sn2(SO4)3Cl being noncentrosymmetric, while Rb3Sn2(SO4)2Cl3 and Cs3Sn2(SO4)2Cl3 are centrosymmetric. Powder second-harmonic generation (SHG) measurements indicate that K3Sn2(SO4)3Cl is a nonlinear optical material that is type I phase matchable with a weak SHG response (0.1× KDP). Photoluminescence tests reveal that the three title compounds emit strong greenish yellow, orange, and salmon light, respectively, under UV excitation, indicating that they are promising inorganic solid fluorescent materials. Simultaneously, a detailed structural analysis of all the known tin(II) halide sulfates has been performed, which will guide the systematic exploration of high-performance tin(II)-based functional materials in the future.
Collapse
Affiliation(s)
- Yuwei Ge
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | | | - Fei Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
16
|
Li XB, Hu CL, Kong F, Mao JG. Ba 3Sb 2(PO 4) 4 and Cd 3Sb 2(PO 4) 4(H 2O) 2: Two New Antimonous Phosphates with Distinct [Sb(PO 4) 2] Structure Types and Enhanced Birefringence. Inorg Chem 2021; 60:1957-1964. [PMID: 33434013 DOI: 10.1021/acs.inorgchem.0c03419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two new antimonous phosphates, namely Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2, have been successfully prepared through mild hydrothermal reactions. Ba3Sb2(PO4)4 features a 1D [Sb(PO4)2]3- chain structure separated by Ba2+ cations while Cd3Sb2(PO4)4(H2O)2 presents a 2D [Sb(PO4)2]3- layered structure with Cd2+ located at the interlayer space. The [Sb(PO4)2]3- chain in Ba3Sb2(PO4)4 is the first example of 1D antimonous phosphate structure, and Cd3Sb2(PO4)4(H2O)2 represents the first d10 transition metal antimonous phosphate. Based on UV-vis-NIR spectra, both Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2 can display large optical band gaps (4.30 and 4.36 eV, respectively). But their transparent ranges are quite different because of the coordination water of Cd3Sb2(PO4)4(H2O)2 (500-2000 and 500-1300 nm for Ba and Cd compounds). The anhydrous Ba3Sb2(PO4)4 shows high thermal stability in the nitrogen atmosphere (900 °C). Because of the incorporation of the lone pair cation of Sb(III), the birefringence of Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2 has been enhanced to 0.086 and 0.053 at 532 nm, respectively.
Collapse
Affiliation(s)
- Xiao-Bao Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Fang Kong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
17
|
Yan Y, Chen Y, Jiang B, Jing Q, Zhang J. Li 5Cs(SO 4) 3: a potential zero-order wave plate material with short deep-ultraviolet cutoff edge. NEW J CHEM 2021. [DOI: 10.1039/d1nj03883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reversible phase transition Li5Cs(SO4)3 single crystal with transparency ranging from 180 nm to 4.7 μm has been obtained, which is a potential zero-order DUV wave plate material with small birefringence properties.
Collapse
Affiliation(s)
- Yuchen Yan
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| | - Yanna Chen
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Bao Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Qun Jing
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| | - Jun Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| |
Collapse
|
18
|
Wang L, Wang H, Zhang D, Gao D, Bi J, Huang L, Zou G. Centrosymmetric RbSnF 2NO 3vs. noncentrosymmetric Rb 2SbF 3(NO 3) 2. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00395j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new UV nonlinear optical fluoride nitrate Rb2SbF3(NO3)2 exhibits a strong SHG response of 2.7 times that of benchmark KDP and an appropriate birefringence of 0.06@1064 nm.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Hongmei Wang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Die Zhang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Daojiang Gao
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Jian Bi
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Guohong Zou
- College of Chemistry
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
19
|
The study of structure evolvement of KTiOPO4 family and their nonlinear optical properties. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Zhang W, Wei Z, Yang Z, Pan S. Two new ammonium/alkali-rare earth metal difluorophosphates ALa(PO 2F 2) 4 (A = NH 4 and K) with moderate birefringence and short cutoff edges. Dalton Trans 2020; 49:11591-11596. [PMID: 32776048 DOI: 10.1039/d0dt01951h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, two new ammonium/alkali-rare-earth metal fluorophosphates ALa(PO2F2)4 (A = NH4 and K) have been successfully obtained via a facile route. The introduction of F- anions with high electronegativity and non-π-conjugated species [PO2F2]- was found in the title compounds. Different from the [PO4]3- unit in phosphates, the (PO2F2)- group retains the merit of wide UV transmittance in phosphates; meanwhile, it has large polarizability anisotropy, and theoretical calculation shows that the calculated birefringences are 0.023 and 0.019 for KLa(PO2F2)4 and NH4La(PO2F2)4, respectively. More importantly, this work will contribute to the structural and functional diversity of phosphate chemistry by the exploration of the fascinating difluorophosphates.
Collapse
Affiliation(s)
- Wenyao Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonglei Wei
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
| |
Collapse
|