1
|
Jeon AR, Han BY, Kwon M, Yu SH, Chung KY, Shim J, Lee M. Bilayer Interphase for Air-Stable and Dendrite-Free Lithium Metal Anode Cycling in Carbonate Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402213. [PMID: 38881352 DOI: 10.1002/smll.202402213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Indexed: 06/18/2024]
Abstract
The intrinsic reactivity of lithium (Li) toward ambient air, combined with insufficient cycling stability in conventional electrolytes, hinders the practical adoption of Li metal anodes in rechargeable batteries. Here, a bilayer interphase for Li metal is introduced to address both its susceptibility to corrosion in ambient air and its deterioration during cycling in carbonate electrolytes. Initially, the Li metal anode is coated with a conformal bottom layer of polysiloxane bearing methacrylate, followed by further grafting with poly(vinyl ethylene carbonate) (PVEC) to enhance anti-corrosion capability and electrochemical stability. In contrast to single-layer applications of polysiloxane or PVEC, the bilayer design offers a highly uniform coating that effectively resists humid air and prevents dendritic Li growth. Consequently, it demonstrates stable plating/stripping behavior with only a marginal increase in overpotential over 200 cycles in carbonate electrolytes, even after exposure to ambient air with 46% relative humidity. The design concept paves the way for scalable production of high-voltage, long-cycling Li metal batteries.
Collapse
Affiliation(s)
- A-Re Jeon
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Byeol Yi Han
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Minhyung Kwon
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung Yoon Chung
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jimin Shim
- Department of Chemistry Education, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minah Lee
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
2
|
Wang Z, Cui F, Sui Y, Yan J. Radical chemistry in polymer science: an overview and recent advances. Beilstein J Org Chem 2023; 19:1580-1603. [PMID: 37915554 PMCID: PMC10616707 DOI: 10.3762/bjoc.19.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| |
Collapse
|
4
|
Chen Z, Li Z, Lan P, Xu H, Lin N. Hydrophobic and thermal-insulating aerogels based on rigid cellulose nanocrystal and elastic rubber. Carbohydr Polym 2022; 275:118708. [PMID: 34742433 DOI: 10.1016/j.carbpol.2021.118708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022]
Abstract
Inspired from the ancient China philosophy of "coupling hardness with softness", we attempted the combination of rigid cellulose nanocrystals (CNC) and elastic rubbers to solve the limitations of structural brittleness and water sensitivity of CNC-based aerogels. Three rubber chains with the different chemical structures (silicon rubber, 1,2-polybutadiene, styreneic block copolymer) were covalently bonded on the CNC porous skeleton based on thiol-ene click chemistry, to fabricate the CNC/rubber composite aerogels. With the introduction of moderate loading levels of rubber, the composites aerogels exhibited low density and shrinkage, high porosity and specific surface area and improved mechanical performance. Furthermore, the presence of rubber components completely changed the hydrophilic nature of cellulose skeleton as the hydrophobic aerogels, contributing the superior solvents resistance and self-cleaning property. With their advantages on mechanical stability, heat insulation and hydrophobicity, the fabricated aerogels in this study exhibited the high added values in various potential applications.
Collapse
Affiliation(s)
- Ziyang Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zikang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Hui Xu
- Department of Engineering Technology, Huzhou College, Huzhou 313000, PR China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, PR China.
| |
Collapse
|
5
|
Porous Materials Based on Poly(methylvinylsiloxane) Cross-Linked with 1,3,5,7-Tetramethylcyclotetrasiloxane in High Internal Phase Emulsion as Precursors to Si-C-O and Si-C-O/Pd Ceramics. MATERIALS 2021; 14:ma14195661. [PMID: 34640059 PMCID: PMC8510497 DOI: 10.3390/ma14195661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022]
Abstract
Polysiloxane networks were prepared by hydrosilylation of poly(methylvinylsiloxane) (V3 polymer) with 1,3,5,7-tetramethylcyclotetrasiloxane (D4H) at various Si-Vinyl: Si-H groups molar ratios in water-in-oil high internal phase emulsion (HIPE). Curing the emulsions followed by removal of water led to foamed cross-linked polysiloxane systems differing in the cross-linking degrees, as well as residual Si-H and Si-Vinyl group concentrations. Treatment of thus obtained materials in Pd(OAc)2 solution in tetrahydrofuran resulted in the formation of porous palladium/polymer nanocomposites with different Pd contents (1.09–1.70 wt %). Conducted investigations showed that pyrolysis of the studied materials at 1000 °C in argon atmosphere leads to porous Si-C-O and Si-C-O/Pd ceramics containing amorphous carbon and graphitic phases. Thermogravimetric (TG) analysis of the starting cross-linked polymer materials and those containing Pd nanoparticles revealed that the presence of palladium deteriorates thermal stability and decreases ceramic yields of preceramic networks. The extent of this effect depends on polymer cross-linking density in the system.
Collapse
|