1
|
Elahi E, Rabeel M, Ahmed B, Aziz J, Suleman M, Khan MA, Rehman S, Rehmat A, Asim M, Rehman MA, Ifseisi AA, Assal ME, Khan MF, Kim S. Revealing Bipolar Photoresponse in Multiheterostructured WTe 2-GaTe/ReSe 2-WTe 2 P-N Diode by Hybrid 2D Contact Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54367-54376. [PMID: 39330931 DOI: 10.1021/acsami.4c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been thoroughly investigated with regard to practical applications. Recent studies on 2D materials have reignited attraction in the p-n junction, with promising potential for applications in both electronics and optoelectronics. 2D materials provide exceptional band structural diversity in p-n junction devices, which is rare in regular bulk semiconductors. In this article, we demonstrate a p-n diode based on multiheterostructure configuration, WTe2-GaTe-ReSe2-WTe2, where WTe2 acts as heterocontact with GaTe/ReSe2 junction. Our devices with heterocontacts of WTe2 showed excellent performance in electronic and optoelectronic characteristics as compared to contacts with basic metal electrodes. However, the highest rectification ratio was achieved up to ∼2.09 × 106 with the lowest ideality factor of ∼1.23. Moreover, the maximum change in photocurrent (Iph) is measured around 312 nA at Vds = 0.5 V. The device showed a high responsivity (R) of 4.7 × 104 m·AW-1, maximum external quantum efficiency (EQE) of 2.49 × 104 (%), and detectivity (D*) of 2.1 × 1011 Jones at wavelength λ = 220 nm. Further, we revealed the bipolar photoresponse mechanisms in WTe2-GaTe-ReSe2-WTe2 devices due to band alignment at the interface, which can be modified by applying different gate voltages. Hence, our promising results render heterocontact engineering of the GaTe-ReSe2 heterostructured diode as an excellent candidate for next-generation optoelectronic logic and neuromorphic computing.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5, Prague 616628, Czech Republic
| | - Muhammad Rabeel
- Department of Electrical Engineering, Sejong University, Seoul 05006, South Korea
| | - Bilal Ahmed
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea
| | - Jamal Aziz
- Chair of Smart Sensor Systems, University of Wuppertal, Wuppertal 42119, Germany
| | - Muhammad Suleman
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, South Korea
| | - Muhammad Asghar Khan
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
| | - Shania Rehman
- Department of Semiconductor System Engineering, Sejong University Seoul, 05006, South Korea
| | - Arslan Rehmat
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
| | - Muhammad Asim
- Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006 South Korea
| | - Malik Abdul Rehman
- Department of Chemical Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
| | - Ahmad A Ifseisi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul 05006, South Korea
| | - Sungho Kim
- Division of Electronic & Semiconductor Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Elahi E, Ahmad M, Dahshan A, Rabeel M, Saleem S, Nguyen VH, Hegazy HH, Aftab S. Contemporary innovations in two-dimensional transition metal dichalcogenide-based P-N junctions for optoelectronics. NANOSCALE 2023; 16:14-43. [PMID: 38018395 DOI: 10.1039/d3nr04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDCs) with various physical characteristics have attracted significant interest from the scientific and industrial worlds in the years following Moore's law. The p-n junction is one of the earliest electrical components to be utilized in electronics and optoelectronics, and modern research on 2D materials has renewed interest in it. In this regard, device preparation and application have evolved substantially in this decade. 2D TMDCs provide unprecedented flexibility in the construction of innovative p-n junction device designs, which is not achievable with traditional bulk semiconductors. It has been investigated using 2D TMDCs for various junctions, including homojunctions, heterojunctions, P-I-N junctions, and broken gap junctions. To achieve high-performance p-n junctions, several issues still need to be resolved, such as developing 2D TMDCs of superior quality, raising the rectification ratio and quantum efficiency, and successfully separating the photogenerated electron-hole pairs, among other things. This review comprehensively details the various 2D-based p-n junction geometries investigated with an emphasis on 2D junctions. We investigated the 2D p-n junctions utilized in current rectifiers and photodetectors. To make a comparison of various devices easier, important optoelectronic and electronic features are presented. We thoroughly assessed the review's prospects and challenges for this emerging field of study. This study will serve as a roadmap for more real-world photodetection technology applications.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Physics & Astronomy and Graphene Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea.
| | - Muneeb Ahmad
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - A Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Muhammad Rabeel
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - Sidra Saleem
- Division of Science Education, Department of Energy Storage/Conversion Engineering for Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Van Huy Nguyen
- Department of Nanotechnology and Advanced Materials Engineering, and H.M.C., Sejong University, Seoul 05006, South Korea
| | - H H Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006 South Korea.
| |
Collapse
|
3
|
Nguyen TMH, Tran MH, Bark CW. Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2979. [PMID: 37999333 PMCID: PMC10675135 DOI: 10.3390/nano13222979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which was deposited using the sputtering method followed by post-annealing treatment, exhibited good transparency to deep-UV spectra (67% at a wavelength of 254 nm), along with high electrical conductivity (11.3 S/cm). Under 254 nm UVC illumination, the lead-halide-perovskite-based photodetector developed on the prepared ITO electrode in a vertical structure exhibited an excellent on/off ratio of 1.05 × 104, a superb responsivity of 250.98 mA/W, and a high specific detectivity of 4.71 × 1012 Jones without external energy consumption. This study indicates that post-annealed ITO ultrathin films can be used as electrodes that satisfy both the electrical conductivity and deep-UV transparency requirements for high-performance bottom-illuminated optoelectronic devices, particularly for use in UVC photodetectors.
Collapse
Affiliation(s)
| | | | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (T.M.H.N.); (M.H.T.)
| |
Collapse
|
4
|
Khan K, Tareen AK, Iqbal M, Ye Z, Xie Z, Mahmood A, Mahmood N, Zhang H. Recent Progress in Emerging Novel MXenes Based Materials and their Fascinating Sensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206147. [PMID: 36755364 DOI: 10.1002/smll.202206147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Indexed: 05/11/2023]
Abstract
Early transition metals based 2D carbides, nitrides and carbonitrides nanomaterials are known as MXenes, a novel and extensive new class of 2D materials family. Since the first accidently synthesis based discovery of Ti3 C2 in 2011, more than 50 additional compositions have been experimentally reported, including at least eight distinct synthesis methods and also more than 100 stoichiometries are theoretically studied. Due to its distinctive surface chemistry, graphene like shape, metallic conductivity, high hydrophilicity, outstanding mechanical and thermal properties, redox capacity and affordable with mass-produced nature, this diverse MXenes are of tremendous scientific and technological significance. In this review, first we'll come across the MXene based nanomaterials possible synthesis methods, their advantages, limitations and future suggestions, new chemistry related to their selected properties and potential sensing applications, which will help us to explain why this family is growing very fast as compared to other 2D families. Secondly, problems that help to further improve commercialization of the MXene nanomaterials based sensors are examined, and many advances in the commercializing of the MXene nanomaterials based sensors are proposed. At the end, we'll go through the current challenges, limitations and future suggestions.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental & Safety Inc., Shenzhen, 518107, P. R. China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Muhammad Iqbal
- Department of BioChemistry, Quaid-i-Azam University, Islamabad, 45320, Islamic Republic of Pakistan
| | - Zhang Ye
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, 518116, China
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Nasir Mahmood
- School of Science, The Royal Melbourne Institute of Technology University, Melbourne, Victoria, VIC 3001, Australia
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
5
|
Barettin D, Sakharov AV, Tsatsulnikov AF, Nikolaev AE, Pecchia A, Auf der Maur M, Karpov SY, Cherkashin N. Impact of Local Composition on the Emission Spectra of InGaN Quantum-Dot LEDs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1367. [PMID: 37110952 PMCID: PMC10145816 DOI: 10.3390/nano13081367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
A possible solution for the realization of high-efficiency visible light-emitting diodes (LEDs) exploits InGaN-quantum-dot-based active regions. However, the role of local composition fluctuations inside the quantum dots and their effect of the device characteristics have not yet been examined in sufficient detail. Here, we present numerical simulations of a quantum-dot structure restored from an experimental high-resolution transmission electron microscopy image. A single InGaN island with the size of ten nanometers and nonuniform indium content distribution is analyzed. A number of two- and three-dimensional models of the quantum dot are derived from the experimental image by a special numerical algorithm, which enables electromechanical, continuum k→·p→, and empirical tight-binding calculations, including emission spectra prediction. Effectiveness of continuous and atomistic approaches are compared, and the impact of InGaN composition fluctuations on the ground-state electron and hole wave functions and quantum dot emission spectrum is analyzed in detail. Finally, comparison of the predicted spectrum with the experimental one is performed to assess the applicability of various simulation approaches.
Collapse
Affiliation(s)
- Daniele Barettin
- Department of Electronic Engineering, Università Niccoló Cusano, 00133 Rome, Italy
| | - Alexei V. Sakharov
- Ioffe Physico-Technical Institute RAS, 26 Polytekhnicheskaya str., 194021 St. Petersburg, Russia; (A.V.S.); (A.F.T.); (A.E.N.)
| | - Andrey F. Tsatsulnikov
- Ioffe Physico-Technical Institute RAS, 26 Polytekhnicheskaya str., 194021 St. Petersburg, Russia; (A.V.S.); (A.F.T.); (A.E.N.)
| | - Andrey E. Nikolaev
- Ioffe Physico-Technical Institute RAS, 26 Polytekhnicheskaya str., 194021 St. Petersburg, Russia; (A.V.S.); (A.F.T.); (A.E.N.)
| | | | - Matthias Auf der Maur
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Sergey Yu. Karpov
- Soft-Impact, Ltd., P.O. Box 83, 27 Engels ave., 194156 St. Petersburg, Russia
| | - Nikolay Cherkashin
- CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse, CEDEX 4, France
| |
Collapse
|
6
|
Abstract
The past one and a half decades have witnessed the tremendous progress of two-dimensional (2D) crystals, including graphene, transition-metal dichalcogenides, black phosphorus, MXenes, hexagonal boron nitride, etc., in a variety of fields. The key to their success is their unique structural, electrical, mechanical and optical properties. Herein, this paper gives a comprehensive summary on the recent advances in 2D materials for optoelectronic approaches with the emphasis on the morphology and structure, optical properties, synthesis methods, as well as detailed optoelectronic applications. Additionally, the challenges and perspectives in the current development of 2D materials are also summarized and indicated. Therefore, this review can provide a reference for further explorations and innovations of 2D material-based optoelectronics devices.
Collapse
|
7
|
Lin Z, Zhu W, Zeng Y, Shu Y, Hu H, Chen W, Li J. Enhanced Photodetection Range from Visible to Shortwave Infrared Light by ReSe 2/MoTe 2 van der Waals Heterostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2664. [PMID: 35957096 PMCID: PMC9370303 DOI: 10.3390/nano12152664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Type II vertical heterojunction is a good solution for long-wavelength light detection. Here, we report a rhenium selenide/molybdenum telluride (n-ReSe2/p-MoTe2) photodetector for high-performance photodetection in the broadband spectral range of 405-2000 nm. Due to the low Schottky barrier contact of the ReSe2/MoTe2 heterojunction, the rectification ratio (RR) of ~102 at ±5 V is realized. Besides, the photodetector can obtain maximum responsivity (R = 1.05 A/W) and specific detectivity (D* = 6.66 × 1011 Jones) under the illumination of 655 nm incident light. When the incident wavelength is 1550-2000 nm, a photocurrent is generated due to the interlayer transition of carriers. This compact system can provide an opportunity to realize broadband infrared photodetection.
Collapse
Affiliation(s)
- Zhitao Lin
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China; (Z.L.); (Y.S.)
| | - Wenbiao Zhu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; (W.Z.); (Y.Z.); (H.H.)
| | - Yonghong Zeng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; (W.Z.); (Y.Z.); (H.H.)
| | - Yiqing Shu
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China; (Z.L.); (Y.S.)
| | - Haiguo Hu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; (W.Z.); (Y.Z.); (H.H.)
| | - Weicheng Chen
- Guangdong-HongKong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Jianqing Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China; (Z.L.); (Y.S.)
| |
Collapse
|
8
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Chaoudhary S, Dewasi A, S RP, Rastogi V, Pereira RN, Sinopoli A, Aïssa B, Mitra A. Laser ablation fabrication of a p-NiO/ n-Si heterojunction for broadband and self-powered UV-Visible-NIR photodetection. NANOTECHNOLOGY 2022; 33:255202. [PMID: 35272274 DOI: 10.1088/1361-6528/ac5ca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
We report on the optoelectronic characteristics ofp-NiO/n-Si heterojunction photodiode for broadband photodetection, fabricated by depositing ap-type NiO thin film onto a commercialn-type silicon substrate using pulsed laser deposition (PLD) technique. The structural properties of the PLD-grownp-NiO material were analysed by means of x-ray diffraction and x-ray photoelectron spectroscopy, confirming its crystalline nature and revealing the presence of Ni vacancies, respectively. Hall measurements confirmed thep-type semiconducting nature of the NiO thin film having a carrier concentration of 8.4 × 1016cm-3. The current-voltage (I-V) characteristics of thep-NiO/n-Si heterojunction photodevice were investigated under different wavelengths ranging from UV to NIR. The self-bias properties under different illuminations of light were also explored systematically. Under self-bias condition, the photodiode exhibits excellent responsivities of 12.5 mA W-1, 24.6 mA W-1and 30.8 mA W-1with illumination under 365 nm, 485 nm, and 850 nm light, respectively. In addition, the time dependency of the photoresponse of the fabricated photodevice has also been investigated and discussed thoroughly.
Collapse
Affiliation(s)
- Savita Chaoudhary
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Avijit Dewasi
- Institute for Plasma Research, Gandhinagar-382428, Bhat, Gujarat, India
| | - Ram Prakash S
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Vipul Rastogi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Rui N Pereira
- Department of Physics and i3N-Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alessandro Sinopoli
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Brahim Aïssa
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Anirban Mitra
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
10
|
Ermolaev GA, Voronin KV, Tatmyshevskiy MK, Mazitov AB, Slavich AS, Yakubovsky DI, Tselin AP, Mironov MS, Romanov RI, Markeev AM, Kruglov IA, Novikov SM, Vyshnevyy AA, Arsenin AV, Volkov VS. Broadband Optical Properties of Atomically Thin PtS 2 and PtSe 2. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3269. [PMID: 34947618 PMCID: PMC8708229 DOI: 10.3390/nano11123269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023]
Abstract
Noble transition metal dichalcogenides (TMDCs) such as PtS2 and PtSe2 show significant potential in a wide range of optoelectronic and photonic applications. Noble TMDCs, unlike standard TMDCs such as MoS2 and WS2, operate in the ultrawide spectral range from ultraviolet to mid-infrared wavelengths; however, their properties remain largely unexplored. Here, we measured the broadband (245-3300 nm) optical constants of ultrathin PtS2 and PtSe2 films to eliminate this gap and provide a foundation for optoelectronic device simulation. We discovered their broadband absorption and high refractive index both theoretically and experimentally. Based on first-principle calculations, we also predicted their giant out-of-plane optical anisotropy for monocrystals. As a practical illustration of the obtained optical properties, we demonstrated surface plasmon resonance biosensors with PtS2 or PtSe2 functional layers, which dramatically improves sensor sensitivity by 60 and 30%, respectively.
Collapse
Affiliation(s)
- Georgy A. Ermolaev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Kirill V. Voronin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Mikhail K. Tatmyshevskiy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Arslan B. Mazitov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya St., 127055 Moscow, Russia
| | - Aleksandr S. Slavich
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Andrey P. Tselin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Mikhail S. Mironov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Roman I. Romanov
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 31 Kashirskoe Sh., 115409 Moscow, Russia;
| | - Andrey M. Markeev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Ivan A. Kruglov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya St., 127055 Moscow, Russia
| | - Sergey M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Andrey A. Vyshnevyy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Aleksey V. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- GrapheneTek, Skolkovo Innovation Center, 143026 Moscow, Russia
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- GrapheneTek, Skolkovo Innovation Center, 143026 Moscow, Russia
| |
Collapse
|
11
|
Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. PROG SOLID STATE CH 2021. [DOI: 10.1016/j.progsolidstchem.2021.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Efficient ReSe 2 Photodetectors with CVD Single-Crystal Graphene Contacts. NANOMATERIALS 2021; 11:nano11071650. [PMID: 34201696 PMCID: PMC8303534 DOI: 10.3390/nano11071650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023]
Abstract
Rhenium-based 2D transition metal dichalcogenides such as ReSe2 are suitable candidates as photoactive materials for optoelectronic devices. Here, photodetectors based on mechanically exfoliated ReSe2 crystals were fabricated using chemical vapor deposited (CVD) graphene single-crystal (GSC) as lateral contacts. A “pick & place” method was adopted to transfer the desired crystals to the intended position, easing the device fabrication while reducing potential contaminations. A similar device with Au was fabricated to compare contacts’ performance. Lastly, a CVD hexagonal boron nitride (hBN) substrate passivation layer was designed and introduced in the device architecture. Raman spectroscopy was carried out to evaluate the device materials’ structural and electronic properties. Kelvin probe force measurements were done to calculate the materials’ work function, measuring a minimal Schottky barrier height for the GSC/ReSe2 contact (0.06 eV). Regarding the electrical performance, I-V curves showed sizable currents in the GSC/ReSe2 devices in the dark and under illumination. The devices presented high photocurrent and responsivity, along with an external quantum efficiency greatly exceeding 100%, confirming the non-blocking nature of the GSC contacts at high bias voltage (above 2 V). When introducing the hBN passivation layer, the device under white light reached a photo-to-dark current ratio up to 106.
Collapse
|