1
|
Wang H, Sun L, Zhao Y, Qiu Y. DFT Study on the Second-Order NLO Responses of 2-Phenyl Benzoquinoline Ir(III) Complexes by Substituents and Redox Effects. J Phys Chem A 2024; 128:8709-8716. [PMID: 39344984 DOI: 10.1021/acs.jpca.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Metal complexes have received extensive attention in nonlinear optical (NLO) materials because of their advantages, such as shorter response times and more flexible structural properties. Density functional theory is used in investigating the geometric structures, electronic structures, charge centroid, and first hyperpolarizability (βtot) of a series of selected 15 coordinated Ir(III) complexes. The substitute effect and one-electron redox process effects on the structures and properties of 15 coordinated Ir(III) complexes are considered. When the electron-withdrawing group is introduced into the ligand, the HOMO-LUMO energy gap decreases and the βtot value increases, positively correlating with the electron-withdrawing ability. The single electron redox process can also improve the NLO responses of complexes, especially the reduction process. The βtot value of complex 4- is the largest, 2078 times higher than that of complex 4. The analysis shows that the variation of NLO responses of complexes is ascribed to the change of electronic structures and the charge transfer modes induced by the ligand modification and redox process, which are considered to be two effective methods in enhancing the NLO responses of 2-phenyl benzoquinoline Ir(III) complexes. This study aims to offer design insights into high-performance nonlinear optical materials.
Collapse
Affiliation(s)
- Hequn Wang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Liting Sun
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuanyuan Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongqing Qiu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Toward the design of inorganic–organic hybrid Ir(III) complexes containing borazine and benzene ligands with excellent second-order NLO responses: An appropriate substitution and π-conjugated extension. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Huang YC, Yuan JB, Qin ZQ, Li HY, Xue W, Li TY. Selective and sensitive detection of Zn(II) in solution and nanofibers using phosphorescent iridium(III) complexes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Olumba ME, O’Donnell RM, Rohrabaugh TN, Teets TS. Panchromatic Excited-State Absorption in Bis-Cyclometalated Iridium Isocyanide Complexes. Inorg Chem 2022; 61:19344-19353. [DOI: 10.1021/acs.inorgchem.2c03136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Morris E. Olumba
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas77204-5003, United States
| | - Ryan M. O’Donnell
- U.S. Army Combat Capabilities Development Command, Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland20783, United States
| | - Thomas N. Rohrabaugh
- U.S. Army Combat Capabilities Development Command, Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland20783, United States
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas77204-5003, United States
| |
Collapse
|
5
|
Su H, Hu L, Zhu S, Lu J, Hu J, Liu R, Zhu H. Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.
Collapse
Affiliation(s)
- Huan Su
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Lai Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Senqiang Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Jiapeng Lu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Jinyang Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Rui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| |
Collapse
|
6
|
Wang H, Ye J, Qiu Y, Chen F. Theoretical investigation of electronic structures, second-order NLO responses of cyclometalated Ir( iii) and Rh( iii) counterpart complexes: effect of metal centers. NEW J CHEM 2022. [DOI: 10.1039/d2nj01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning center metal is an effective manner to modulate second-order NLO responses. When the big size Ir is introduced in complexes, the superior NLO responses can be found over its Rh counterparts.
Collapse
Affiliation(s)
- Huiying Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinting Ye
- College of Chemistry and Materials Science, Inner Mongolia University for the Nationalities, Tongliao 028000, China
| | - Yongqing Qiu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Feiwu Chen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Lu J, Pan Q, Zhu S, Liu R, Zhu H. Ligand-Mediated Photophysics Adjustability in Bis-tridentate Ir(III) Complexes and Their Application in Efficient Optical Limiting Materials. Inorg Chem 2021; 60:12835-12846. [PMID: 34428896 DOI: 10.1021/acs.inorgchem.1c01142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of novel bis-tridentate Ir(III) complexes (Ir1-Ir5) incorporating both functional N∧C∧N-type ligands (L1-L5) and N∧N∧C-type ligand (L0) were synthesized attentively and characterized scientifically. The crystalline structures of Ir1, Ir3 and Ir4 were resoundingly confirmed by XRD. With the aid of experimental and theoretical methods, their photophysical properties at transient and steady states were scientifically investigated. The broadband charge-transfer absorption for these aforementioned Ir(III) complexes is up to 600 nm as shown in the UV-visible absorption spectrum. The emission lifetimes of their excited states are good. Between the visible and near-infrared regions, Ir1-Ir5 possessed powerful excited-state absorption. Hence, a remarkably robust reverse saturable absorption (RSA) process can occur once the complexes are irradiated by a 532 nm laser. The RSA effect follows the descending order: Ir3 > Ir5 > Ir4 ≈ Ir1 > Ir2. To sum up, modifying electron-donating units (-OCH3) and large π-conjugated units to the pyridyl N∧C∧N-type ligands is a systematic way to markedly raise the RSA effect. Therefore, these octahedral bis-tridentate Ir(III) complexes are potentially state-of-the-art optical limiting (OPL) materials.
Collapse
Affiliation(s)
- Jiapeng Lu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qianqian Pan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Senqiang Zhu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hongjun Zhu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|