1
|
Zhang Z, Chen Y, Wang D, Lin Y, Li K, Fan G, Li F. Hierarchical Nano/Micro-Array Structured CuMgAl-LDH/rGO Hybrids for Remarkably Improved Flame Retardancy and Smoke Suppression Performance of Flexible Polyvinyl Chloride. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39469766 DOI: 10.1021/acsami.4c09430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we explored the rational integration of layered double hydroxides (LDHs) with reduced graphene oxide (rGO) to create a hierarchical nano/microarray structured CuMgAl-LDH/rGO hybrid aimed at enhancing the flame retardancy and smoke suppression properties of polymer nanocomposites. The results indicated that the limiting oxygen index (LOI) value of the G-CuMgAl/polyvinyl chloride (PVC) composite reached 35.8%, reflecting a 6.4% increase compared to pristine PVC (29.4%), and achieved a UL-94 V-0 rating. Furthermore, in comparison to pristine PVC, the peak heat release rate (PHRR) of the G-CuMgAl/PVC composite was significantly reduced by 40.2%; the total heat release rate (THR) decreased by 24.3%; the maximum average heat release rate (MARHE) diminished by 41.6%; the peak smoke production (PSPR) decreased by 37.8%; the total smoke production (TSP) was reduced by 31.3%; and the average effective heat of combustion (av-EHC) decreased by 15.2%. The enhanced flame retardancy and reduced smoke production can primarily be attributed to the multiple synergistic interactions among the highly dispersed constituents and the nano/microstructures, which effectively impede the transfer of heat, mass, and O2 from various directions while preventing further combustion of the underlying matrix by creating a tortuous path in the condensed phase. Additionally, this study provides a novel perspective on the design and synthesis of structured LDHs/rGO hybrids, with the potential to enhance flame retardancy and smoke suppression properties across a broad spectrum of polymer materials.
Collapse
Affiliation(s)
- Zixuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Yuyang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Defu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
- Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| |
Collapse
|
2
|
Zhurenkov KE, Akbarinejad A, Porritt H, Horrocks MS, Malmström J. Colloidal Probe Technique Optimization for Determination of Young's Modulus of Soft Adhesive Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39023221 DOI: 10.1021/acs.langmuir.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atomic force microscopy (AFM) is a valuable tool for determining the Young's modulus of a wide range of materials. However, it faces challenges, particularly when assessing adhesive materials like soft poly(N-isopropylacrylamide) (pNIPAM) hydrogels. This study focuses on enhancing the consistency and reliability of AFM measurements by functionally modifying AFM spherical tip cantilevers to address substrate adhesion issues with these hydrogels. Specifically, hydrophobic functionalization with 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOCTS) emerged as the most effective approach, yielding consistent and reliable Young's modulus data across various pNIPAM hydrogel samples. This work highlights the importance of optimizing data acquisition in AFM, rather than relying on postprocessing, to reduce inconsistencies in Young's modulus assessment.
Collapse
Affiliation(s)
- Kirill E Zhurenkov
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Alireza Akbarinejad
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Matthew S Horrocks
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, 1010 Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, 6140 Wellington, New Zealand
| |
Collapse
|
3
|
Billah REK, Azoubi Z, López-Maldonado EA, Majdoubi H, Lgaz H, Lima EC, Shekhawat A, Tamraoui Y, Agunaou M, Soufiane A, Jugade R. Multifunctional Cross-Linked Shrimp Waste-Derived Chitosan/MgAl-LDH Composite for Removal of As(V) from Wastewater and Antibacterial Activity. ACS OMEGA 2023; 8:10051-10061. [PMID: 36969446 PMCID: PMC10034834 DOI: 10.1021/acsomega.2c07391] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
This work synthesized a novel chitosan-loaded MgAl-LDH (LDH = layered double hyroxide) nanocomposite, which was physicochemically characterized, and its performance in As(V) removal and antimicrobial activity was evaluated. Chitosan-loaded MgAl-LDH nanocomposite (CsC@MgAl-LDH) was prepared using cross-linked natural chitosan from shrimp waste and modified by Mg-Al. The main mechanisms predominating the separation of As(V) were elucidated. The characteristic changes confirming MgAl-LDH modification with chitosan were analyzed through Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis-differential thermal analysis, and Brunauer-Emmett-Teller measurements. Porosity and the increased surface area play an important role in arsenic adsorption and microbial activity. Adsorption kinetics follows the general order statistically confirmed by Bayesian Information Criterion differences. To understand the adsorption process, Langmuir, Freundlich, and Liu isotherms were studied at three different temperatures. It was found that Liu's isotherm model was the best-fitted model. CsC@MgAl-LDH showed the maximum adsorption capacity of 69.29 mg g-1 toward arsenic at 60 °C. It was observed that the adsorption capacity of the material rose with the increase in temperature. The spontaneous behavior and endothermic nature of adsorption was confirmed by the thermodynamic parameters study. Minimal change in percentage removal was observed with coexisting ions. The regeneration of material and adsorption-desorption cycles revealed that the adsorbent is economically efficient. The nanocomposite was very effective against Staphylococcus aureus and Bacillus subtilus.
Collapse
Affiliation(s)
- Rachid El Kaim Billah
- Department
of Chemistry, Faculty of Sciences, Laboratory of Coordination and
Analytical Chemistry, University of Chouaib
Doukkali, El Jadida 24000, Morocco
| | - Zineb Azoubi
- Laboratory
of Physiopathology and Molecular Genetics, Faculty of Sciences Ben
M’Sick, Hassan II University of Casablanca, Casablanca 20450, Morocco
| | - Eduardo Alberto López-Maldonado
- Faculty
of Chemical Sciences and Engineering, Autonomous
University of Baja, California, CP, Tijuana 22390, Baja
California, Mexico
| | - Hicham Majdoubi
- Materials
Science energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Hassane Lgaz
- Innovative
Durable Building and Infrastructure Research Center, Center for Creative
Convergence Education, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Eder C. Lima
- Institute
of Chemistry, Federal University of Rio
Grande do Sul, Porto
Alegre 91501-970, RS, Brazil
| | - Anita Shekhawat
- Department
of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | - Youssef Tamraoui
- Materials
Science energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Mahfoud Agunaou
- Department
of Chemistry, Faculty of Sciences, Laboratory of Coordination and
Analytical Chemistry, University of Chouaib
Doukkali, El Jadida 24000, Morocco
| | - Abdessadik Soufiane
- Department
of Chemistry, Faculty of Sciences, Laboratory of Coordination and
Analytical Chemistry, University of Chouaib
Doukkali, El Jadida 24000, Morocco
| | - Ravin Jugade
- Department
of Chemistry, RTM Nagpur University, Nagpur 440033, India
| |
Collapse
|
4
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
5
|
Yang N, Ma J, Shi J, Guo X. Organic Modification of Layered Double Hydroxides and Its Applications. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Suresh S, Krishnan VG, George A, Nagendra B, Rosely CVS, Bhoje Gowd E. Liquid phase exfoliated nanosheets as multifunctional fillers to semicrystalline polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2039068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sruthi Suresh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vipin G. Krishnan
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashitha George
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Baku Nagendra
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - C. V. Sijla Rosely
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - E. Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Aladpoosh R, Montazer M. Functionalization of cellulose fibers alongside growth of 2D LDH platelets through urea hydrolysis inspired Taro wettability. Carbohydr Polym 2022; 275:118584. [PMID: 34742403 DOI: 10.1016/j.carbpol.2021.118584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/02/2022]
Abstract
Here, Cotton fabric was functionalized via hybrid coating including 2D MgAl LDH (layered double hydroxide) and SA (stearic acid). The urea hydrolysis was employed for construction of vertically aligned LDH on surface of cellulose fibers under hydrothermal condition. The in situ formation mechanism of LDH on cotton surface was nucleation, growth, and interaction with activated cellulose chains. The partial cellulose ionization in the alkaline solution led to nucleophilic behavior towards electron deficient atom. The effect of different ageing, synthesis temperature, and amount of SA were investigated and optimized at 100 °C for 24 h with 0.05 M. The superhydrophobic surface architecture of treated cotton with hierarchical micro/nanostructure was inspired from the Taro leaf structure with continuous contact line presented WCA of 154 ° and CAH of 9 °. The Cotton@LDH@SA exhibited efficient oil/water separation after several washes (>90%) with good stain resistant. Also, the physico-mechanical properties were studied.
Collapse
Affiliation(s)
- Razieh Aladpoosh
- Department of Textile Engineering, Amirkabir University of Technology, Functional Fibrous Structures & Environmental Enhancement (FFSEE), No. 424, Hafez Ave., P.O. Box: 15875-4413, Tehran, Iran
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology, Functional Fibrous Structures & Environmental Enhancement (FFSEE), No. 424, Hafez Ave., P.O. Box: 15875-4413, Tehran, Iran.
| |
Collapse
|
9
|
Regeneration mechanism, modification strategy, and environment application of layered double hydroxides: Insights based on memory effect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Somosi Z, May NV, Sebők D, Pálinkó I, Szilágyi I. Catalytic antioxidant nanocomposites based on sequential adsorption of redox active metal complexes and polyelectrolytes on nanoclay particles. Dalton Trans 2021; 50:2426-2435. [PMID: 33527932 DOI: 10.1039/d0dt04186f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An antioxidant nanocomposite was prepared by successive adsorption of redox active metal complexes (copper(ii)-bipyridyl and iron(iii)-citrate) and polyelectrolytes (poly(styrene sulfonate) and poly(diallyldimethyl ammonium)) on layered double hydroxide nanoclay. The experimental conditions were optimized in each preparation step and thus, the final composite formed highly stable colloids, i.e., excellent resistance against salt-induced aggregation was achieved. Due to the synergistic effect of the metal complexes, the developed composite showed remarkable activity in the dismutation of superoxide radicals, close to the one determined for the native superoxide dismutase enzyme. The obtained composite is highly selective for superoxide radical dismutation, while its activity in other antioxidant tests was close to negligible. Structural characterization of the composite revealed that the excellent superoxide radical scavenging ability originated from the advantageous coordination geometry around the copper(ii) center formed upon immobilization. The structure formed around the metal centers led to optimal redox features and consequently, to an improved superoxide dismutase-like activity. The catalytic antioxidant composite is a promising candidate to reduce oxidative stress in industrial manufacturing processes, where natural enzymes quickly lose their activity due to the harsh environmental conditions.
Collapse
Affiliation(s)
- Zoltán Somosi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Research Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Dániel Sebők
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - István Pálinkó
- Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Research Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|