1
|
Uruburo C, Y P Rupasinghe DMR, Gupta H, Knieser RM, Lopez LM, Furigay MH, Higgins RF, Pandey P, Baxter MR, Carroll PJ, Zeller M, Bart SC, Schelter EJ. Metal-Ligand Redox Cooperativity in Cerium Amine-/Amido-Phenolate-Type Complexes. Inorg Chem 2024; 63:9418-9426. [PMID: 38097382 DOI: 10.1021/acs.inorgchem.3c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
The synthesis and characterization of two cerium complexes of redox-active amine/amido-phenolate-type ligands are reported. A tripodal framework comprising the tris(2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)amino-phenyl) amine (H6Clamp) proligand was synthesized for comparison of its cerium complex with a potassium-cerium heterobimetallic complex of the 4,6-di-tert-butyl-2-[(2,6-diisopropylphenyl)imino]quinone (dippap) proligand. Structural studies indicate differences in the cerium(III) cation coordination spheres, where CeIII(CH3CN)1.5(H3Clamp) (1-Ce(H3Clamp)) exhibits shorter Ce-O distances and longer Ce-N bond distances compared to the analogous distances in K3(THF)3CeIII(dippap)3 (2-Ce(ap)), due to the gross structural differences between the systems. Differences are also evident in the temperature-dependent magnetic properties, where smaller χT products were observed for 2-Ce(ap) compared to 1-Ce(H3Clamp). Solution electrochemical studies for the complexes were interpreted based on ligand- and metal-based oxidation events, and the cerium(III) oxidation of 2-Ce(ap) was observed to be more facile than that of 1-Ce(H3Clamp), behavior that was cautiously attributed to the rigidity of the encrypted 1-Ce(H3Clamp) complex compared to the heterobimetallic framework of 2-Ce(ap). These results contribute to the understanding of how ligand designs can promote facile redox cycling for cerium complexes of redox-active ligands, given the large contraction of cerium-ligand bonds upon oxidation.
Collapse
Affiliation(s)
- Christian Uruburo
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - D M Ramitha Y P Rupasinghe
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Himanshu Gupta
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rachael M Knieser
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lauren M Lopez
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Maxwell H Furigay
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Robert F Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Pragati Pandey
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Makayla R Baxter
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Furigay MH, Chaudhuri S, Li C, Zhou J, Pandey P, Higgins RF, Gupta H, Carroll PJ, Gau MR, Anna JM, Schatz GC, Schelter EJ. Observing Similarities and Differences in the Properties of Isostructural Niobium(V)/Tantalum(V) Coordination Compounds with Strong Pi-Donor Ligands. Inorg Chem 2023; 62:19238-19247. [PMID: 37956394 DOI: 10.1021/acs.inorgchem.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While niobium and tantalum are found together in their mineral ores, their respective applications in technology require chemical separation. Nb/Ta separations are challenging due to the similar reactivities displayed by these metals in the solution phase. Coordination complexes of these metals have been studied in the contexts of catalysis, small-molecule activation, and functional group insertion reactivity; relatively few studies exist directly comparing the properties of isostructural Nb/Ta complexes. Such comparisons advance the development of Nb/Ta separation chemistry through the potential for differential reactivity. Here, we explore fundamental physicochemical properties in extensively characterized Nb/Ta coordination complexes [Na(DME)3][MClamp], (Clamp6- = tris-(2-(3',5'-di-tert-butyl-2'-oxyphenyl)amidophenyl)amine; M = Nb, Ta) to advance the understanding of the different electronic, optical, and excited-state properties that these metals exhibit in pi-loaded coordination complexes.
Collapse
Affiliation(s)
- Maxwell H Furigay
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Subhajyoti Chaudhuri
- Department of Chemistry and Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenshuai Li
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Jiawang Zhou
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Pragati Pandey
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Robert F Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Himanshu Gupta
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - George C Schatz
- Department of Chemistry and Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Carbonel H, Mikulski TD, Nugraha K, Johnston J, Wang Y, Brown SN. Optically active bis(aminophenols) and their metal complexes. Dalton Trans 2023; 52:13290-13303. [PMID: 37668189 DOI: 10.1039/d3dt02436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Optically active C2-symmetric bis(aminophenols) based on (R)-2,2'-diaminobinaphthyl (BiniqH4) and (R,R)-2,3-butanediyldianthranilate (BdanH4) have been prepared by condensation of the diamines with 3,5-di-tert-butylcatechol. Group 10 bis(iminosemiquinone) complexes (R)-(Biniq)M (M = Pd, Pt) and (C,R,R)-(Bdan)Pd have been prepared by oxidatively metalating the corresponding ligands. In (R)-(Biniq)M, the C2 axis passes through the approximate square plane of the bis(iminosemiquinone)metal core, while in (C,R,R)-(Bdan)Pd the C2 axis is perpendicular to this plane. In the latter compound, the (R,R)-butanediyl strap binds selectively over one enantioface of the metal complex in a conformation where the methyl groups are anti to one another. Osmium oxo complexes with the intrinsically chiral OsO(amidophenoxide)2 chromophore are obtained by metalation of OsO(OCH2CH2O)2 with (R,R)-BdanH4. Both the (A,R,R) and (C,R,R) diastereomers can be observed, with metalation in refluxing toluene selectively giving the latter isomer. The electronic structures of the complexes are illuminated by the circular dichroism spectra, in conjuction with the optical spectra and TDDFT calculations.
Collapse
Affiliation(s)
- Halen Carbonel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Timothy D Mikulski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Kahargyan Nugraha
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - James Johnston
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| |
Collapse
|
4
|
Ayson PRH, Brown SN. Slip to π Ru: structural distortions due to metal-iminoxolene π bonding. Chem Commun (Camb) 2023; 59:9618-9621. [PMID: 37462618 DOI: 10.1039/d3cc02943c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Both pseudo-octahedral and pseudo-square pyramidal bis-iminoxolene complexes trans-(Diso)2RuCl2 and trans-(Diso)2Ru(PPh3) are structurally distorted, with the ruthenium atom slipping off the twofold axis of the idealized coordination polyhedra. These distortions take place because they allow or enhance π interactions between ruthenium and the iminoxolene π orbitals.
Collapse
Affiliation(s)
- Patricia Rose H Ayson
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA.
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA.
| |
Collapse
|
5
|
Do TH, Haungs DA, Chin WY, Jerit JT, VanderZwaag A, Brown SN. Modulation of Isomerization and Ligand Exchange Rates by π Bonding in Bis(iminoxolene)iridium Pyridine Complexes. Inorg Chem 2023. [PMID: 37437186 DOI: 10.1021/acs.inorgchem.3c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The bis(iminoxolene)iridium complex (Diso)2IrCl (Diso = N-(2,6-diisopropylphenyl)-4,6-di-tert-butyl-2-imino-o-benzoquinone) reacts with pyridine to give trans-(Diso)2Ir(py)Cl as the kinetic product, with cis-(Diso)2Ir(py)Cl formed as the exclusive thermodynamic product upon heating. Electronic spectra and density functional theory calculations point to very similar electronic structures for the cis and trans isomers, with a nonbonding iminoxolene-centered HOMO and a metal-iminoxolene π* LUMO. The triplet states of cis-(Diso)2Ir(py)Cl and cis-[(Diso)2Ir(py)2]+ (but not trans-(Diso)2Ir(py)Cl) are unusually low in energy (1000-1500 cm-1 above the singlets), as shown by variable-temperature NMR spectroscopy. The low-energy triplets are attributed to a change in dihedral angle in the iminoxolenes, which allows a partial π interaction that cannot be achieved in the trans octahedral compounds. Mechanistic studies of the trans-cis isomerization in toluene indicate that the reaction proceeds via isomerization of the five-coordinate species to a form with cis iminoxolene ligands and an apical oxygen. This form is high in energy due to the loss of a secondary iminoxolene-to-iridium π-donor interaction that is possible in the trans form but not in the cis form for the square pyramidal structures. This stereoelectronic effect, combined with the poorer binding of pyridine in trans-(Diso)2Ir(py)Cl due to the interactions of the N-aryl substituents with the pyridine, makes the pyridine dissociate faster from the trans isomer by a factor of 108 at room temperature.
Collapse
Affiliation(s)
- Thomas H Do
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - David A Haungs
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - William Y Chin
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Jack T Jerit
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Analena VanderZwaag
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
6
|
Haungs DA, Brown SN. Slicing the π in Three Unequal Pieces: Iridium Complexes with Alkyne, Iminoxolene, and Dioxolene Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David A. Haungs
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
7
|
Do TH, Brown SN. Mono- and Bis(iminoxolene)iridium Complexes: Synthesis and Covalency in π Bonding. Inorg Chem 2022; 61:5547-5562. [PMID: 35357169 DOI: 10.1021/acs.inorgchem.1c04005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-(2,6-Diisopropylphenyl)-4,6-di-tert-butyl-o-iminobenzoquinone (Diso) reacts with the (cyclooctadiene)iridium chloride dimer to form a monoiminoxolene complex, (Diso)Ir(cod)Cl. Reaction of 2 equiv of the iminoquinone with chlorobis(cyclooctene)iridium dimer affords the bis-iminoxolene (Diso)2IrCl. This five-coordinate complex adopts a distorted square pyramidal structure with an apical chloride ligand and undergoes halide exchange to form an air-stable iodide complex. (Diso)2IrCl can be reduced by one electron to form neutral, square planar (Diso)2Ir, while oxidation with PhICl2 gives octahedral trans-(Diso)2IrCl2. The cis isomer can be prepared by air oxidation of (Diso)2IrCl; cis/trans isomerization is not observed even on prolonged heating. Structural and spectroscopic features of the complexes are consistent with the presence of strong, covalent π bonding between the metal and the iminoxolene ligands, with structural data suggesting between 45 and 60% iridium character in the π bonding orbitals, depending on the ancillary ligands. The spectroscopic similarity of (Diso)2Ir and (Diso)2IrCl to their cobalt congeners suggests that the first-row metal complexes likewise have appreciably covalent metal-iminoxolene π bonds.
Collapse
Affiliation(s)
- Thomas H Do
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
8
|
Chatterjee M, Mondal S, Hazari AS, Záliš S, Kaim W, Lahiri GK. Variable electronic structure and spin distribution in bis(2,2'-bipyridine)-metal complexes (M = Ru or Os) of 4,5-dioxido- and 4,5-diimido-pyrene. Dalton Trans 2021; 50:4191-4201. [PMID: 33683255 DOI: 10.1039/d1dt00282a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The odd-electron compounds [M(bpy)2(L1)](ClO4) M = Ru ([1](ClO4)) or Os ([2](ClO4)), and the even-electron species [M(bpy)2(H2L2)](ClO4)2, M = Ru ([3](ClO4)2) or Os ([4](ClO4)2) were obtained from pyrene-4,5-dione, L1, or 4,5-diaminopyrene, H4L2, and were characterised structurally, electrochemically and spectroscopically. Experimental and computational analysis (TD-DFT) revealed rather different electronic structures and spin distributions of the paramagnetic monocations 1+-4+. EPR investigations and electronic absorption studies exhibit increasing metal contributions to the singly occupied MO along the series 1+ < 3+ < 4+ < 2+, illustrated by g value and long-wavelength absorbance. In addition to variations of the metal (Ru,Os) and the donor atoms (O,NH) the extension of the π system of the semiquinone-type ligand has a large effect on the electronic structure of the paramagnetic cations.
Collapse
Affiliation(s)
- Madhumita Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | | | | | | | | | | |
Collapse
|
9
|
Erickson AN, Gianino J, Markovitz SJ, Brown SN. Amphiphilicity in Oxygen Atom Transfer Reactions of Oxobis(iminoxolene)osmium Complexes. Inorg Chem 2021; 60:4004-4014. [PMID: 33657323 DOI: 10.1021/acs.inorgchem.1c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxobis(iminoxolene)osmium(VI) compounds (Rap)2OsO (Rap = 2-(4-RC6H4N)-4,6-tBu2C6H2O) are readily deoxygenated by phosphines and phosphites to give five-coordinate (Rap)2Os(PR'3) or six-coordinate (Rap)2Os(PR'3)2. Structural data indicate that this net two-electron reduction is accompanied by apparent oxidation of the iminoxolene ligands due to their greater ability to engage in π donation to the reduced deoxy form of the osmium complex. In (Rap)2Os(PR'3)2, the HOMO is a ligand-based combination of the iminoxolene redox-active orbitals, while the LUMO is a highly covalent metal-iminoxolene π* orbital. In the trans isomer, the HOMO is required to be ligand-localized by symmetry, while in the cis isomer, the ligands adopt a conformation that minimizes metal-ligand π* interactions in the HOMO. Kinetic studies indicate that the deoxygenations involve the rate-determining attack of the phosphorus(III) reagent on the five-coordinate oxo complexes. Varying the substituents of the aryl groups on the iminoxolene ligands or on the triarylphosphines has little effect on the rate of oxygen atom transfer, with the best correlation shown between oxygen atom transfer rates and the HOMO-LUMO gap of the oxo complexes. This suggests that the osmium oxo group shows a balance between electrophilic and nucleophilic character in its oxygen atom transfer reactions with phosphorus(III) reagents.
Collapse
Affiliation(s)
- Alexander N Erickson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Jacqueline Gianino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Sean J Markovitz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
10
|
Filippou V, Blickle S, Bubrin M, Kaim W. Intramolecular Charge Transfer in Ruthenium Complexes [Ru(acac)
2
(ciq)] with Ambidentate Camphoriminoquinone (ciq) Ligands. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vasileios Filippou
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Svenja Blickle
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Martina Bubrin
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Wolfgang Kaim
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| |
Collapse
|
11
|
Transition metal complexes of imidazole appended pyridyline linked bisphosphine, 2,6-bis(2-(diphenylphosphanyl)-1H-imidazol-1-yl)pyridine. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Gianino J, Erickson AN, Markovitz SJ, Brown SN. High-valent osmium iminoxolene complexes. Dalton Trans 2020; 49:8504-8515. [PMID: 32525176 DOI: 10.1039/d0dt01735c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
2-(Arylamino)-4,6-di-tert-butylphenols containing 4-substituted phenyl groups (RapH2) react with oxobis(ethylene glycolato)osmium(vi) in acetone to give square pyramidal bis(amidophenoxide)oxoosmium(vi) complexes. A mono-amidophenoxide complex is observed as an intermediate in these reactions. Reactions in dichloromethane yield the diolate (Hap)2Os(OCH2CH2O). Both the glycolate and oxo complex are converted to the corresponding cis-dichloride complex on treatment with chlorotrimethylsilane. The novel bis(aminophenol) ligand EganH4, containing an ethylene glycol dianthranilate bridge, forms the chelated bis(amidophenoxide) complex (Egan)OsO, where the two nitrogen atoms of the tetradentate ligand bind in the trans positions of the square pyramid. Structural and spectroscopic features of the complexes are described well by an osmium(vi)-amidophenoxide formulation, with the amount of π donation from ligand to metal increasing markedly as the co-ligands change from oxo to diolate to dichloride. In the oxo-bis(amidophenoxides), the symmetry of the ligand π orbitals results in only one effective π donor interaction, splitting the energy of the two osmium-oxo π* orbitals and rendering the osmium-oxo bonding appreciably anisotropic.
Collapse
Affiliation(s)
- Jacqueline Gianino
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Alexander N Erickson
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Sean J Markovitz
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | - Seth N Brown
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| |
Collapse
|