1
|
Sivarajan C, Saha S, Mulla S, Mitra R. NaNH 2 as a Nitrogen Source and Base to Synthesize Triarylamines from Aryl Halides Using Pd-Catalyzed C-N Coupling. J Org Chem 2024; 89:17021-17030. [PMID: 39529372 DOI: 10.1021/acs.joc.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Triarylamines (TAAs) are excellent core structures for multifunctional materials. Reversible single-electron oxidation is the key to versatile applications. Synthesizing these from feedstock materials is inevitable. Here, we report the one-pot synthesis of TAAs from aryl halides and inexpensive NaNH2 as a nitrogen source and base (dual role). The Pd/Xantphos catalytic system shows excellent selectivity toward TAAs from aryl bromides without adding organic amines and an additional base. Various para substituents on the aryl ring show good functional group tolerance in the presence of NaNH2, resulting in moderate to excellent yield (20-91%). Even though the meta-substituted aryl bromides give TAA products in moderate to excellent yields (20-81%), the ortho substitution leads to only diarylamine products. TAAs from aryl chlorides can be achieved only by changing the ligand to Xphos. The mechanistic investigation suggests that three sequential C-N cross-coupling reactions give the TAA products in the presence of NaNH2. The photophysical and electrochemical properties of TAAs and corresponding radicals were tunable based on substitution patterns.
Collapse
Affiliation(s)
- Chinraj Sivarajan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Shriya Saha
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Suhel Mulla
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Raja Mitra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| |
Collapse
|
2
|
Tremlett WDJ, Crowley JD, Wright LJ, Hartinger CG. Towards building blocks for metallosupramolecular structures: non-symmetrically-functionalised ferrocenyl compounds. Dalton Trans 2024; 53:14742-14751. [PMID: 39158552 DOI: 10.1039/d4dt01646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metallosupramolecular architectures formed from metal ions and bridging ligands are increasing in popularity due to their range of applications and ease of self-assembly. Many are able to readily change their shape and/or function in response to an external stimulus and have the ability to encapsulate guest molecules within their internal cavities. Ferrocenyl groups (Fc) have been incorporated previously within the bridging ligands of metallosupramolecular structures due to their ideal attributes brought about by the structural and rotational flexiblity of the two cyclopentadienyl (Cp) rings coordinated to the Fe(II) centre. However, the majority of these Fc-based structures contain symmetrically substituted Cp rings. We report the synthesis and characterisation of non-symmetrically functionalised Fc-based ligands incorporating both N,N' and NHC-donor groups chosen for their differing coordination properties. Both substituents were designed to coordinate to a single metal centre with the dissimilar coordination properties of each donor group facilitating stimulus-induced dissociation/association of one of the substituents as an opening/closing mechanism. Preliminary investigations into the coordination of these Fc-based ligands to a [Ru(η6-p-cymene)]2+ moiety indicated complexation through a mixture of either a bi- or tridentate fashion, as alluded by 1H NMR spectroscopy and mass spectrometry. Density functional theory (DFT) calculations revealed the Fc-based ligands adopt a syn conformation driven by H-bonding and π-interactions between the two Cp substituents, which facilitate coordination of both donor groups towards the metal centre.
Collapse
Affiliation(s)
- William D J Tremlett
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
3
|
Stogniy MY, Anufriev SA, Bogdanova EV, Gorodetskaya NA, Anisimov AA, Suponitsky KY, Grishin ID, Sivaev IB. Charge-compensated nido-carborane derivatives in the synthesis of iron(II) bis(dicarbollide) complexes. Dalton Trans 2024. [PMID: 38264799 DOI: 10.1039/d3dt03549b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A series of stable iron(II) bis(dicarbollide) derivatives [8,8'-(RNHC(Et)HN)2-3,3'-Fe(1,2-C2B9H10)2] (R = Pr, R = Ph, (CH2)2OH, (CH2)3OH, (CH2)2NMe2) was prepared starting from FeCl2 or [FeCl2(dppe)] and the corresponding nido-carboranyl amidines [10-RNHC(Et)HN-7,8-C2B9H11]. In a similar way, the reactions of the oxonium derivatives of nido-carborane with FeCl2 in tetrahydrofuran in the presence of t-BuOK lead to the corresponding stable oxonium derivatives iron(II) bis(dicarbollide) [8,8'-(RR'O)2-3,3'-Fe(1,2-C2B9H10)2] (RR' = (CH2)4, (CH2)2O(CH2)2, (CH2)5; R = R' = Et), which can be alternatively prepared by the reaction of the parent iron(II) bis(dicarbollide) with tetrahydrofuran or 1,4-dioxane in the presence of Me2SO4. The cyclic voltammetry studies of the synthesized iron(II) bis(dicarbollide) derivatives revealed that the introduction of amidinium and oxonium substituents leads to a significant increase in the Fe2+/Fe3+ redox potential relative to the parent iron(II) bis(dicarbollide). The redox potentials of the oxonium derivatives are close to the redox potential of ferrocene and somewhat lower than redox potentials of sulfonium and phosphonium derivatives of iron(II) bis(dicarbollide).
Collapse
Affiliation(s)
- Marina Yu Stogniy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Sergey A Anufriev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - Ekaterina V Bogdanova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Nadezhda A Gorodetskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA - Russian Technological University, Moscow, Russia
| | - Alexei A Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- G.V. Plekhanov Russian University of Economics, Moscow, Russia
| | - Ivan D Grishin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Chemistry, National Research University Higher School of Economics (HSE University), Moscow, Russia
| |
Collapse
|
4
|
Kunde T, Pausch T, Guńka PA, Krzyżanowski M, Kasprzak A, Schmidt BM. Fast, solvent-free synthesis of ferrocene-containing organic cages via dynamic covalent chemistry in the solid state. Chem Sci 2022; 13:2877-2883. [PMID: 35382473 PMCID: PMC8905640 DOI: 10.1039/d1sc06372c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
A simple, solvent-free synthetic protocol towards the synthesis of organic self-assembled macromolecules has been established. By employing mechanochemistry using glassware readily available to every organic chemist, we were able to synthesise three novel organic cage compounds exemplarily and to speed up the synthesis of a ferrocene-containing macrocycle by a factor of 288 compared to the solution-based synthesis. The structural investigation of the newly synthesised cages revealed different modes of connectivity from using ferrocene-containing aldehydes caused by the free rotation of the cyclopentadienyl units against each other. By extending the facile solvent-free synthesis to ball-milling, even compounds that show lower reactivity could be employed in the dynamic covalent formation of organometallic cage compounds. The presented protocol gives access to otherwise inaccessible structures, speeds up general synthetic workflows, and simultaneously reduces the environmental impact of supramolecular syntheses.
Collapse
Affiliation(s)
- Tom Kunde
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany http://www.bmschmidtlab.de
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany http://www.bmschmidtlab.de
| | - Piotr A Guńka
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Maurycy Krzyżanowski
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany http://www.bmschmidtlab.de
| |
Collapse
|
5
|
Krzyżanowski M, Nowicka AM, Kazimierczuk K, Durka K, Lulinski S, Kasprzak A. Design of a D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) molecular cage bearing boronate ester linkages. Dalton Trans 2022; 51:10601-10611. [DOI: 10.1039/d2dt01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a simple, highly selective, and efficient (isolated yield 68%) synthesis of a novel D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) organic cage (FcB-cage) by incorporating the boronate ester as a linkage...
Collapse
|
6
|
Kasprzak A, Kasprzak N, Kowalczyk A, Nowicka AM. Ferrocenylated 1,3,5-triphenylbenzenes for the electrochemical detection of various cations or anions. Dalton Trans 2021; 50:8426-8433. [PMID: 34037029 DOI: 10.1039/d1dt01287h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three diverse 1,3,5-triphenylbenzene derivatives bearing three ferrocene units (Fc1-Fc3) were used for the construction of electrochemical sensors for the detection of various cations or anions. The obtained derivatives contained imine (Fc1 and Fc2) or amide bonds (Fc3) between 1,3,5-triphenylbenzene and ferrocene skeletons, which further influenced the ability of the as-synthesized ferrocenylated molecules to recognize cations (Cu(ii), Pb(ii), Cr(iii) and Fe(iii); compounds Fc1 and Fc2) or monovalent anions (Br-, I-, ClO4-, NO3-, CH3COO-, and H2PO4-; compound Fc3). In the case of cation recognition, differential pulse voltammetry (DPV) experiments revealed that the Fc1 receptor was characterized by much better sensitivity compared to the Fc2 receptor and the limit of detection (LOD) values ranged from 0.5 to 1.8 μM. Similarly, such very low LOD values (0.7-1.5 μM) were also found in the case of anion recognition by the Fc3 receptor. Importantly, the advantage of the tested Fc receptors is also their long-term stability (sensors were stable at least for 2 months).
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Natalia Kasprzak
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland.
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland.
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Kosińska AI, Nisiewicz MK, Nowicka AM, Kasprzak A. Electrochemical Recognition of Aromatic Species with Ferrocenylated 1,3,5-Triazine- or 1,3,5-Triphenylbenzene-Containing Highly Organized Molecules. Chempluschem 2021; 86:820-826. [PMID: 34102030 DOI: 10.1002/cplu.202100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/20/2021] [Indexed: 11/08/2022]
Abstract
Two ferrocenylated organized molecules comprising 1,3,5-triphenylbenzene (Fc-1) or 2,4,6-triphenyl-1,3,5-triazine skeletons (Fc-2) were used for the first time as receptor layers for the electrochemical recognition of polycyclic aromatic hydrocarbons. While our group recently reported the synthesis of Fc-1, herein the facile synthesis of its 2,4,6-triphenyl-1,3,5-triazine-containing structural analog (Fc-2) is presented. Although the synthesis of Fc-2 was found to be challenging, we achieved a very high yield (89 %) under mild conditions using an acid-catalyzed imine-bond formation reaction in 1,4-dioxane:toluene solvent system. Title compounds were comprehensively characterized with various analytical techniques, including spectroscopic (NMR, FT-IR, FT-Raman spectroscopy) methods, high-resolution mass spectrometry (HRMS), microscopic (SEM) and electrochemical (CV) analyses. Fc-1 and Fc-2 were also used for the construction of the first-of-a-kind recognition layers (electrochemical sensors) dedicated to the recognition of polycyclic aromatic hydrocarbons. Fully constructed innovative sensors enabled the efficient recognition of analytes since the limit of detection (LOD) values were not higher than 2.9 μM. Comparative studies between the working parameters of electrochemical sensors comprising Fc-1 or Fc-2 were also included in this work.
Collapse
Affiliation(s)
- Aleksandra I Kosińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664, Warsaw, Poland
| | - Monika K Nisiewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664, Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093, Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664, Warsaw, Poland
| |
Collapse
|
8
|
Mishra I, Bhol M, Kalimuthu P, Sathiyendiran M. Emerging Spacers-Based Ligands for Supramolecular Coordination Complexes. CHEM REC 2021; 21:594-614. [PMID: 33615668 DOI: 10.1002/tcr.202000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/01/2023]
Abstract
The design and self-assembly of supramolecular coordination complexes (SCCs) i. e., discrete cyclic metalloarchitectures such as cycles, cages, mesocates, and helicates with desired size, shape, and properties have been increasing exponentially owing to their potential applications in molecular sensors, molecular cargos, molecular recognition, and catalysis. The introduction of the organic motifs and metal complexes as a spacer provides functionality to the metalloarchitecture. This review mainly focusses on newly evolving spacer based ligands employed to yield simple to high-order metallosupramolecular assemblies using straight-forward approaches. The new spacers including corannulene, organic cyclic framework, bicyclic organic motifs, aliphatic chain, metalloligands, triarylboron, BODIPY, azaphosphatrane, phosphine, and thio/selenophosphates offer a great set of properties and in-built functionalities to the metalloarchitectures which are discussed in this review.
Collapse
Affiliation(s)
- Isha Mishra
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Palanisamy Kalimuthu
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302, Tamil Nadu, India
| | | |
Collapse
|
9
|
Kasprzak A, Nisiewicz MK, Nowicka AM. A chromatography-free total synthesis of a ferrocene-containing dendrimer exhibiting the property of recognizing 9,10-diphenylanthracene. Dalton Trans 2021; 50:2483-2492. [PMID: 33514975 DOI: 10.1039/d0dt04261g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecules comprising several ferrocene residues constitute an intriguing group of compounds for various applications. Here, the total synthesis of a new example of a ferrocene-containing dendrimer is presented. The target compound was obtained in excellent combined yield (65%) employing facile, chromatography-free methods at each step. Interesting findings, meeting the dynamic covalent chemistry concept, are reported. Cyclic voltammetry analyses revealed one pair of current signals for the ferrocene moieties. Ultimately, the synthesized ferrocene-containing dendrimer has been used as an innovative recognition material for 9,10-diphenylanthracene, a polycyclic aromatic hydrocarbon, with the limit of detection value equal to 0.06 μM.
Collapse
Affiliation(s)
- Artur Kasprzak
- Department Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | | | | |
Collapse
|
10
|
Kasprzak A, Guńka PA, Kowalczyk A, Nowicka AM. Synthesis and structural, electrochemical and photophysical studies of triferrocenyl-substituted 1,3,5-triphenylbenzene: a cyan-light emitting molecule showing aggregation-induced enhanced emission. Dalton Trans 2020; 49:14807-14814. [PMID: 33094773 DOI: 10.1039/d0dt02948c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Triferrocenyl-substituted 1,3,5-triphenylbenzene was successfully synthesized in high yield. Single-crystal X-ray diffraction experiments revealed that the internal rotations of the ferrocenyl moieties are significantly restricted in the solid phase and that there are no significant π stacking interactions therein. The photoluminescence of the crystals is essentially the same as that of dilute chloroform solutions. However, studies of this cyan-light emitting substance in mixtures of chloroform and methanol revealed the aggregation-induced enhanced emission (AIEE) feature that boosts its fluorescence quantum yield from 13% up to 74%. We demonstrate the AIEE effect for a new class of easy-to-prepare aromatic molecules containing several metallocene units for the first time.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | | | | | | |
Collapse
|