1
|
Ma L, Xue Q, Dang Y, Wang L, Zhou Y. A novel bimetallic organic framework catalyst induced by dual-ligand for highly efficient oxygen evolution. J Colloid Interface Sci 2024; 655:234-242. [PMID: 37944371 DOI: 10.1016/j.jcis.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
With the continuous advancement of non-noble electrocatalysts, metal-organic frameworks (MOFs) are emerging as a promising substitute for noble metal nanomaterials in oxygen evolution reaction (OER) due to their larger pre-development and higher cost-effectiveness. However, there are still challenges in modifying the electronic structure of MOFs at the molecular level to enhance their activity of OER. Herein, bimetallic CoNi MOFs were utilized and modified with terephthalic acid (A) and 2, 5-dihydroxyterephthalic acid (B) (A2.5B-CoNi MOFs) through a straightforward hydrothermal method. By adjusting the ratio of A and B dual-ligand, the A2.5B-CoNi MOFs with the best ligand ratio exhibit significantly enhanced OER activity with an overpotential of only 300 mV at a current density of 10 mA cm-2, a low Tafel slope of 45.27 mV dec-1. In addition, A2.5B-CoNi MOFs also have better long-term stability than commercial RuO2. This study provides a research direction for the development of high-performance OER electrocatalysts based on dual-ligand MOFs.
Collapse
Affiliation(s)
- Long Ma
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qi Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Li Wang
- Shaanxi Coal Chemical Industry Technology Research Institute Co. Ltd, Xi'an 710100, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Shi G, Du Y, Gao Y, Jia H, Hong H, Han L, Zhu N. Reduction of Nitro Group by Sulfide and Its Applications in Amine Synthesis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
3
|
Cheng L, Guo Q, Zhao K, Li YM, Ren H, Ji CY, Li W. AuPd Alloys and Chiral Proline Dual-Functionalized NH2-UiO-66 Catalysts for Tandem Oxidation/Asymmetric Aldol Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Li S, Huang Z, Liu H, Liu M, Zhang C, Wang F. Polar hydrogen species mediated nitroarenes selective reduction to anilines over an [FeMo]S x catalyst. Dalton Trans 2022; 51:1553-1560. [PMID: 34989728 DOI: 10.1039/d1dt03107d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein present an efficient approach for the chemoselective synthesis of arylamines from nitroarenes and hydrazine over an iron-molybdenum sulfide catalyst ([FeMo]Sx). The heterogeneous hydrogen transfer reduction can be efficiently carried out at 30 °C and provides anilines with 95-99% selectivities. The in situ gas product analysis demonstrates that [FeMo]Sx can catalyze the decomposition of N2H4 to H* species, not H2. Combining with the kinetic analysis of the aniline generation rates from nitrobenzene and intermediates, the nitro group reduction to the nitroso group is confirmed to be the rate-determining step. The positive slope of Hammett's equation suggests that the critical intermediate in the rate-determining step is in the negative state, which suggests that the active H* should be in polar states (Hδ- and Hδ+). These findings will provide a novel route for the synthesis of substituted anilines and broaden the application of MoSx catalysts under mild conditions.
Collapse
Affiliation(s)
- Siqi Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Meijiang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaofeng Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Liu P, Han H, Xia Q, Ma N, Lu S, Shang X, Wang G, Chao S. Facile construction of S-containing Co-based metal organic framework core-shell microspheres as an efficient bifunctional oxygen electrocatalyst. Dalton Trans 2021; 50:11440-11445. [PMID: 34359071 DOI: 10.1039/d1dt01765a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cost-effective non-noble metal bifunctional electrocatalyst towards the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is very important for energy-related applications. Micro/nanomaterials with core-shell structures have emerged as potential non-noble metal catalyst candidates. Herein, an efficient bifunctional oxygen electrocatalyst, S-containing Co-based metal organic framework core-shell microspheres (Co-MOF-CSMSs), has been designed and constructed by using 2,2':5',2''-terthiophene-5,5''-dicarboxylic acid as a novel ligand through a facile one-step hydrothermal method. Due to the integrated favorable structural characteristics of the core-shell structure and MOFs for electrocatalysis, Co-MOF-CSMSs are revealed as a good bifunctional electrocatalyst for the ORR and OER, including an onset potential of 0.93 V vs. RHE (reversible hydrogen electrode), a half-wave potential of 0.78 V vs. RHE and an overpotential of 0.35 V at 10 mA cm-2. This work provides a low-cost and facile method to design and construct advanced micro/nanomaterials with core-shell structures to targetedly develop high-performance bifunctional oxygen electrocatalysts.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medial University, Xinxiang 453003, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ma X, Qian K, Ejeromedoghene O, Kandawa-Schulz M, Song W, Wang Y. A label-free electrochemical platform based on a thionine functionalized magnetic Fe-N-C electrocatalyst for the detection of microRNA-21. Analyst 2021; 146:4557-4565. [PMID: 34251374 DOI: 10.1039/d1an00430a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Taking a composite of a nanomaterial and a signal molecule as a substrate material can provide a label-free electrochemical platform. Besides, the nanomaterial with a high catalytic activity towards the signal molecule can improve the sensitivity of the platform. Herein, a thionine functionalized Fe-N-C nanocomposite was employed as the substrate. Firstly, the electrocatalytic activity of Fe-N-C towards the electroreduction of thionine was explored. Then, an immobilization-free and label-free electrochemical platform for the determination of microRNA-21 based on Fe-N-C-thionine/Fe3O4@AuNPs was constructed. A magnetic glassy carbon electrode (MGCE) was used to keep the magnetic Fe-N-C-thionine/Fe3O4@AuNPs modified onto the surface of the MGCE. Fe-N-C and Fe3O4 nanoparticles can co-catalyze the electroreduction of thionine and a strong electrochemical reduction signal of thionine could be realized in the differential pulse voltammetry (DPV) test. Also, a catalytic hairpin assembly (CHA) reaction was utilized to enhance the sensitivity of the developed electrochemical biosensor. Besides, the developed biosensor shows excellent specificity and reproducibility in the test of human serum samples, indicating its wide application prospects in the early-stage diagnosis of tumors.
Collapse
Affiliation(s)
- Xiangyu Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Kun Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | | | - Wei Song
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, Namibia
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|