1
|
He S, Tu Y, Zhang J, Zhang L, Ke J, Wang L, Du L, Cui Z, Song H. Ammonia-Induced FCC Ru Nanocrystals for Efficient Alkaline Hydrogen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308053. [PMID: 38009478 DOI: 10.1002/smll.202308053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
The urgent development of effective electrocatalysts for hydrogen evolution and hydrogen oxidation reaction (HER/HOR) is needed due to the sluggish alkaline hydrogen electrocatalysis. Here, an unusual face-centered cubic (fcc) Ru nanocrystal with favorable HER/HOR performance is offered. Guided by the lower calculated surface energy of fcc Ru than that of hcp Ru in NH3, the carbon-supported fcc Ru electrocatalyst is facilely synthesized in the NH3 reducing atmosphere. The specific HOR kinetic current density of fcc Ru can reach 23.4 mA cmPGM -2, which is around 20 and 21 times greater than that of hexagonal close-packed (hcp) Ru and Pt/C, respectively. Additionally, the HER specific activity is enhanced more than six times in fcc Ru electrocatalyst when compared to Pt/C. Experimental and theoretical analysis indicate that the phase transition from hcp Ru to fcc Ru can negatively shift the d band center, weaken the interaction between catalysts and key intermediates and therefore enhances the HER/HOR kinetics.
Collapse
Affiliation(s)
- Shunyi He
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanhua Tu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jun Ke
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
2
|
Zhang R, Dong Y, Su Y, Zhai W, Xu S. MoS 2/SnS/CoS Heterostructures on Graphene: Lattice-Confinement Synthesis and Boosted Sodium Storage. Molecules 2023; 28:5972. [PMID: 37630224 PMCID: PMC10458794 DOI: 10.3390/molecules28165972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The development of high-efficiency multi-component composite anode nanomaterials for sodium-ion batteries (SIBs) is critical for advancing the further practical application. Numerous multi-component nanomaterials are constructed typically via confinement strategies of surface templating or three-dimensional encapsulation. Herein, a composite of heterostructural multiple sulfides (MoS2/SnS/CoS) well-dispersed on graphene is prepared as an anode nanomaterial for SIBs, via a distinctive lattice confinement effect of a ternary CoMoSn-layered double-hydroxide (CoMoSn-LDH) precursor. Electrochemical testing demonstrates that the composite delivers a high-reversible capacity (627.6 mA h g-1 after 100 cycles at 0.1 A g-1) and high rate capacity of 304.9 mA h g-1 after 1000 cycles at 5.0 A g-1, outperforming those of the counterparts of single-, bi- and mixed sulfides. Furthermore, the enhancement is elucidated experimentally by the dominant capacitive contribution and low charge-transfer resistance. The precursor-based lattice confinement strategy could be effective for constructing uniform composites as anode nanomaterials for electrochemical energy storage.
Collapse
Affiliation(s)
- Ruyao Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (R.Z.); (Y.D.); (Y.S.); (W.Z.)
| | - Yan Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (R.Z.); (Y.D.); (Y.S.); (W.Z.)
| | - Yu Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (R.Z.); (Y.D.); (Y.S.); (W.Z.)
| | - Wenkai Zhai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (R.Z.); (Y.D.); (Y.S.); (W.Z.)
| | - Sailong Xu
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| |
Collapse
|
3
|
Han D, Du G, Wang Y, Jia L, Zhao W, Su Q, Ding S, Zhang M, Xu B. Chemical Energy-Driven Lithiation Preparation of Defect-Rich Transition Metal Nanostructures for Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202779. [PMID: 35934891 DOI: 10.1002/smll.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Transition metal nanostructures are widely regarded as important catalysts to replace the precious metal Pt for hydrogen evolution reaction (HER) in water splitting. However, it is difficult to obtain uniform-sized and ultrafine metal nanograins through general high-temperature reduction and sintering processes. Herein, a novel method of chemical energy-driven lithiation is introduced to synthesize transition metal nanostructures. By taking advantage of the slow crystallization kinetics at room temperature, more surface and boundary defects can be generated and remained, which reduce the atomic coordination number and tune the electronic structure and adsorption free energy of the metals. The obtained Ni nanostructures therein exhibit excellent HER performance. In addition, the bimetal of Co and Ni shows better electrocatalytic kinetics than individual Ni and Co nanostructures, reaching 100 mA cm-2 at a low overpotential of 127 mV. The high HER performance originates from well-formed synergistic effect between Ni and Co by tuning the electronic structures. Density functional theory simulations confirm that the bimetallic NiCo possesses a low Gibbs free energy of hydrogen adsorption, which are conducive to enhance its intrinsic activity. This work provides a general strategy that enables simultaneous defect engineering and electronic modulation of transition metal catalysts to achieve an enhancement in HER performance.
Collapse
Affiliation(s)
- Di Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Lina Jia
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wenqi Zhao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
4
|
Wei R, Tang N, Jiang L, Yang J, Guo J, Yuan X, Liang J, Zhu Y, Wu Z, Li H. Bimetallic nanoparticles meet polymeric carbon nitride: Fabrications, catalytic applications and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Ogundipe TO, Shen L, YanShi, Lu Z, Yan C. Recent Advances on Bimetallic Transition Metal Phosphides for Enhanced Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taiwo Oladapo Ogundipe
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
- University of Chinese Academy of Sciences Beijing 100039 P.R. China
| | - Lisha Shen
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - YanShi
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Zhuoxin Lu
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Changfeng Yan
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| |
Collapse
|
6
|
Hierarchical particle-on-sheet CoP fabricated by direct phosphorization of Co(OH)2/ZIF-67 hybrid for boosting hydrogen evolution electrocatalysis. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Macedo Andrade A, Liu Z, Grewal S, Nelson AJ, Nasef Z, Diaz G, Lee MH. MOF-derived Co/Cu-embedded N-doped carbon for trifunctional ORR/OER/HER catalysis in alkaline media. Dalton Trans 2021; 50:5473-5482. [PMID: 33908948 DOI: 10.1039/d0dt04000b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this report, we demonstrate a bimetallic Co/Cu-embedded N-doped carbon structure for trifunctional catalysis of oxygen reduction, oxygen evolution and hydrogen evolution reactions in alkaline media. A hybrid catalyst synthesized through a metal-organic framework-based process (M-NC-CoCu) enables an active trifunctional catalysis due to its multi-faceted favorable characteristics. It is believed that a range of catalytically active sites are formed through the approach including well-dispersed tiny CuCo2O4 phases, a high concentration of pyridinic and graphitic N, and Cu-Ox, Cu-Nx and Co-Nx moieties. In addition, a high-surface-area morphology with a high concentration of sp2 bonding, which is beneficial for facilitated electron conduction, further contributes to the performance as an electrocatalyst.
Collapse
Affiliation(s)
- Angela Macedo Andrade
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California, Merced, CA 95343, USA.
| | - Ziqi Liu
- Department of Mechanical Engineering, University of California, Merced, CA 95343, USA
| | - Simranjit Grewal
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California, Merced, CA 95343, USA.
| | - Art J Nelson
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, CA 94550, USA
| | - Ziad Nasef
- Department of Mechanical Engineering, University of California, Merced, CA 95343, USA
| | - Gerardo Diaz
- Department of Mechanical Engineering, University of California, Merced, CA 95343, USA
| | - Min Hwan Lee
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California, Merced, CA 95343, USA. and Department of Mechanical Engineering, University of California, Merced, CA 95343, USA
| |
Collapse
|