1
|
Zeng M, Ruan Z, Wu S, Tong M. Field-Induced Slow Magnetic Relaxation in Mononuclear Cobalt(II) Complexes Decorated by Macrocyclic Pentaaza Ligands. Molecules 2024; 29:2810. [PMID: 38930875 PMCID: PMC11206533 DOI: 10.3390/molecules29122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Two cobalt(II) complexes [CoL1](OTf)2 (1, L1 = 6,6''-di(anilino)-4'-phenyl-2,2':6',2''-terpyridine) and [CoL2](OTf)2·MeOH (2, L2 = 6,6''-di(N,N-dimethylamino)-4'-phenyl-2,2':6',2''-terpyridine) were synthesized and characterized. Crystal structure analyses showed that the spin carries were coordinated by five N atoms from the neutral pentaaza ligands, forming distorted trigonal bipyramidal coordination environments. Ab initio calculations revealed large easy-axial anisotropy in complexes 1 and 2. Magnetic measurements suggest that complexes 1 and 2 are field-induced single-molecule magnets, whose relaxations are mainly predominated by Raman and direct processes.
Collapse
Affiliation(s)
| | | | - Siguo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (Z.R.); (M.T.)
| | | |
Collapse
|
2
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Syntheses, structures, magnetic and fluorescence properties of coordination polymers constructed with the reduced Schiff base carboxylic acid ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Juráková J, Midlikova J, Hrubý J, Kliuikov A, Santana VT, Pavlik J, Moncol J, Cizmar E, Orlita M, Mohelsky I, Neugebauer P, Gentili D, Cavallini M, Salitros I. Pentacoordinate Cobalt(II) Single Ion Magnets with Pendant Alkyl Chains: Shall We Go for Chloride or Bromide? Inorg Chem Front 2022. [DOI: 10.1039/d1qi01350e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four pentacoordinate complexes 1-4 of the type [Co(L1)X2] and [Co(L2)X2] (where L1=2,6-bis(1-octyl-1H-benzimidazol-2-yl)pyridine for 1 and 2, L2=2,6-bis(1-dodecyl-1H-benzimidazol -2-yl)-pyridine for 3 and 4; X = Cl- for 1 and 3, X...
Collapse
|
5
|
Yu S, Zhang Q, Zhu J, Wei F, Liu D, Hu H, Zou H, Liang Y, Liang F, Chen Z. Two tetranuclear Cu
2
Ln
2
(Ln = Dy, Tb) heterometallic complexes: Structure, solution behavior, and magnetic properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Qin‐Hua Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Jingru Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Fengli Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Hua‐Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| |
Collapse
|
6
|
Wang X, Li R, Wei M, Li J, Li Z, Wang H, Li X. Cobalt metal-organic coordination polymer constructed from 2,3′-oxybisbenzoic acid and 1,3-di(pyridin-4-yl)propane: Crystal structure, slow magnetic relaxation and catalytic properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Chen Y, Yang Q, Peng G, Zhang YQ, Ren XM. Influence of F-position and solvent on coordination geometry and single ion magnet behavior of Co(II) complexes. Dalton Trans 2021; 50:13830-13840. [PMID: 34522941 DOI: 10.1039/d1dt02148f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three mononuclear Co(II) complexes with the compositions of [Co(L1)2] (1), [Co(L2)2(CH3CN)] (2) and [Co(L3)2] (3) (HL1 = 2-((E)-(2-fluorobenzylimino)methyl)-4,6-dibromophenol, HL2 = 2-((E)-(3-fluorobenzylimino)methyl)-4,6-dibromophenol and HL3 = 2-((E)-(4-fluorobenzylimino)methyl)-4,6-dibromophenol) were prepared and structurally determined. The changes in the F-positions in the ligands and solvents led to the formation of these products with various coordination geometries. Both complexes 1 and 3 are four-coordinated and their coordination geometries can be described as tetrahedron and seesaw, whereas complex 2 is five coordinated with a coordination configuration in between trigonal bipyramid and square pyramid. Static magnetic studies reveal that all these complexes exhibit considerable easy-axis magnetic anisotropy. The easy-axis magnetic anisotropy of 1 and 3 mainly derives from the first quartet excited state, whereas that of 2 primarily originates from the first, third and fourth quartet excited states established by theoretical calculations. All the resulting complexes display field-induced slow magnetic relaxation. Complex 3 represents the first Co(II) single ion magnet with a seesaw coordination geometry. Ab initio calculations predict that the magnetic anisotropy will enhance when the seesaw coordination geometry varies from distortion to regulation.
Collapse
Affiliation(s)
- Yue Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qi Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xiao-Ming Ren
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
8
|
Massoud SS, Louka FR, Dial MT, Malek AJ, Fischer RC, Mautner FA, Vančo J, Malina T, Dvořák Z, Trávníček Z. Identification of potent anticancer copper(ii) complexes containing tripodal bis[2-ethyl-di(3,5-dialkyl-1H-pyrazol-1-yl)]amine moiety. Dalton Trans 2021; 50:11521-11534. [PMID: 34346447 DOI: 10.1039/d1dt01724a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of heteroleptic copper(ii) complexes of the composition [Cu(L1-5)Cl]X, where X = ClO4 and/or PF6 and [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl))-(6-methyl-(2-pyridylmethyl))]amine (L1), [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl))-(3,4-dimethoxy-(2-pyridylmethyl))]amine (L2), [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl)-(2-quinolymethyl)]amine (L3), [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazolyl)-(di(3,5-dimethyl-1H-pyrazol-1-yl-methyl))]amine (L4) and [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl)-(5-methyl-3-phenyl-1H-pyrazol-1-yl-methyl)]amine (L5), were prepared and thoroughly characterized including single-crystal X-ray diffraction technique. The in vitro cytotoxicity of complexes against A2780, A2780R, HOS and MCF-7 human cancer cell lines was evaluated using the MTT test. The results revealed that complexes [Cu(L1)Cl]PF6 (1-PF6), [Cu(L2)Cl]ClO4 (2-ClO4) and [Cu(L3)Cl]PF6 (3-PF6) are the most effective, with IC50 values ranging from 1.4 to 6.3 μM, thus exceeding the cytotoxic potential of metallodrug cisplatin (IC50 values ranging from 29.9 to 82.0 μM). The complexes [Cu(L4)Cl]PF6 (4-PF6) and [Cu(L5)Cl]PF6 (5-PF6) showed only moderate cytotoxicity against A2780, with IC50 = 53.6 μM, and 33.8 μM, respectively. The cell cycle profile, time-resolved cellular uptake, interactions with small sulfur-containing biomolecules (cysteine and glutathione), intracellular ROS production, induction of apoptosis and activation of caspases 3/7 were also evaluated in the case of the selected complexes. It has been found that the best performing complexes 1 and 2 cause cell arrest in the G2/M phase and induce apoptosis via the increase in production of ROS, dominantly due to the overproduction of superoxide.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
10
|
Kumar P, SantaLucia DJ, Kaniewska-Laskowska K, Lindeman SV, Ozarowski A, Krzystek J, Ozerov M, Telser J, Berry JF, Fiedler AT. Probing the Magnetic Anisotropy of Co(II) Complexes Featuring Redox-Active Ligands. Inorg Chem 2020; 59:16178-16193. [DOI: 10.1021/acs.inorgchem.0c01812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Daniel J. SantaLucia
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kinga Kaniewska-Laskowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk PL-80-233, Poland
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - John F. Berry
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
11
|
Five-Coordinated Geometries from Molecular Structures to Solutions in Copper(II) Complexes Generated from Polydentate- N-Donor Ligands and Pseudohalides. Molecules 2020; 25:molecules25153376. [PMID: 32722383 PMCID: PMC7436159 DOI: 10.3390/molecules25153376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
A novel series of mononuclear five-coordinated pseudohalido-Cu(II) complexes displaying distorted square bipyramidal: [Cu(L1)(NCS)2] (1), [Cu(L2)(NCS)2] (2) and [Cu(L3)(NCS)]ClO4 (5) as well as distorted trigonal bipyramidal: [Cu(isp3tren)(N3)]ClO4 (3), [Cu(isp3tren)(dca)]ClO4 (4) and [Cu(tedmpza)(dca)]ClO4·0.67H2O (6) geometries had been synthesized and structurally characterized using X-ray single crystal crystallography, elemental microanalysis, IR and UV-vis spectroscopy, and molar conductivity measurements. Different N-donor amine skeletons including tridentate: L1 = [(2-pyridyl)-2-ethyl)-(3,4-dimethoxy)-2-methylpyridyl]methylamine and L2 = [(2-pyridyl)-2-ethyl)-(3,5-dimethyl-4-methoxy)-2-methyl-pyridyl]methylamine, and tetradentate: L3 = bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl)-[2-(3,4-dimethoxy-pyridylmethyl)]amine, tedmpza = tris[(2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl]amine and isp3tren = tris[(2-isopropylamino)ethyl)]amine ligands were employed. Molecular structural parameters such as nature of coligand, its chelate ring size and steric environment incorporated into its skeleton, which lead to adopting one of the two limiting geometries in these complexes and other reported compounds are analyzed and correlated to their assigned geometries in solutions. Similar analysis were extended to other five-coordinated halido-Cu(II) complexes.
Collapse
|