1
|
Zhang H, Li X, Liu J, Lan YQ, Han Y. Advancing Single-Particle Analysis in Synthetic Chemical Systems: A Forward-Looking Discussion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406914. [PMID: 39180273 DOI: 10.1002/adma.202406914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Single-particle analysis (SPA) is a fundamental method of cryo-electron microscopy developed to resolve the structures of biological macromolecules. This method has seen significant success in structural biology, yet its potential applications in synthetic chemical systems remain underexplored. In this perspective article, SPA and associated electron microscopy techniques are first briefly introduced. It is then proposed that SPA is well-suited for structural analysis of chemical systems where discrete, identical macromolecules can be readily obtained. Applicable systems include various clusters such as coinage metal clusters, metal-oxo/sulfur clusters, metal-organic clusters, and supramolecular compounds like coordination cages and metallo-supramolecular cages. When high-quality large single crystals are unattainable, SPA provides an alternative method for determining their structures. Beyond these end products, it is suggested that SPA can be instrumental in studying synthetic intermediates of materials with specific building units, such as metal-organic frameworks and zeolites. Given that various intermediates coexist in the reaction system, a purification step is necessary before conducting SPA, which can be facilitated by soft-landing electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| | - Xiaopeng Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| |
Collapse
|
2
|
Zhang J, Feng P, Bu X, Wu T. Atomically precise metal chalcogenide supertetrahedral clusters: frameworks to molecules, and structure to function. Natl Sci Rev 2022; 9:nwab076. [PMID: 35070325 PMCID: PMC8776542 DOI: 10.1093/nsr/nwab076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/14/2022] Open
Abstract
Metal chalcogenide supertetrahedral clusters (MCSCs) are of significance for developing crystalline porous framework materials and atomically precise cluster chemistry. Early research interest focused on the synthetic and structural chemistry of MCSC-based porous semiconductor materials with different cluster sizes/compositions and their applications in adsorption-based separation and optoelectronics. More recently, focus has shifted to the cluster chemistry of MCSCs to establish atomically precise structure-composition-property relationships, which are critical for regulating the properties and expanding the applications of MCSCs. Importantly, MCSCs are similar to II-VI or I-III-VI semiconductor nanocrystals (also called quantum dots, QDs) but avoid their inherent size polydispersity and structural ambiguity. Thus, discrete MCSCs, especially those that are solution-processable, could provide models for understanding various issues that cannot be easily clarified using QDs. This review covers three decades of efforts on MCSCs, including advancements in MCSC-based open frameworks (reticular chemistry), the precise structure-property relationships of MCSCs (cluster chemistry), and the functionalization and applications of MCSC-based microcrystals. An outlook on remaining problems to be solved and future trends is also presented.
Collapse
Affiliation(s)
- Jiaxu Zhang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Wu Z, Nußbruch I, Nier S, Dehnen S. Ionothermal Access to Defined Oligomers of Supertetrahedral Selenido Germanate Clusters. JACS AU 2022; 2:204-213. [PMID: 35098237 PMCID: PMC8790736 DOI: 10.1021/jacsau.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Indexed: 06/14/2023]
Abstract
Supertetrahedral chalcogenido (semi)metalate clusters have been in the focus of inorganic and materials chemistry for many years owing to a variety of outstanding physical and chemical properties. However, a critical drawback in the canon of studying corresponding compounds has been the lack of control in assembling the supertetrahedral units, which have been known as either highly charged monomeric cluster anions or lower charged, yet extended anionic substructures of linked clusters. The latter is the reason for the predominance of applications of such materials in heterogeneous environment, or their solubilization by organic shielding, which in turn was unfavorable regarding the optical properties. Recently, we reported a partial alkylation of such clusters, which allowed for a significantly enhanced solubility at a marginal impact on the optical gap. Herein we showcase the formation of finite cluster oligomers of supertetrahedral architectures by ionothermal syntheses. We were successful in generating the unprecedented dimers and tetramers of the [Ge4Se10]4- anion in salts with imidazolium-based ionic liquid counterions. The oligomers exhibit lower average negative charges and thus reduced electrostatic interactions between anionic clusters and cationic counterions. As a consequence, the salts readily dissolve in common solvents like DMF. Besides, the tetrameric [Ge16Se36]8- anion represents the largest discrete chalcogenide cluster of a group 14 element. We prove that undestroyed cluster oligomers can be transferred into solution by means of electrospray ionization (ESI) mass spectrometry and provide a full set of characteristics of the compounds including crystal structures and optical properties.
Collapse
|