1
|
Li Z, Arauzo A, Giner Planas J, Bartolomé E. Magnetic properties and magnetocaloric effect of Ln = Dy, Tb carborane-based metal-organic frameworks. Dalton Trans 2024; 53:8969-8979. [PMID: 38651660 DOI: 10.1039/d4dt00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present the synthesis and magneto-thermal properties of carborane-based lanthanide metal-organic frameworks (MOFs) with the formula {[(Ln)3(mCB-L)4(NO3)(DMF)n]·Solv}, where Ln = Dy or Tb, characterized by dc and ac susceptibility, X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD) and heat capacity measurements. The MOF structure is formed by polymeric 1D chains of Ln ions with three different coordination environments (Ln1, Ln2, Ln3) running along the b-axis, linked by carborane-based linkers thus to provide a 3D structure. Static magnetic measurements reveal that these MOFs behave at low temperature as a system of S* = 1/2 Ising spins, weakly interacting ferromagnetically along the 1D polymeric chain (J*/kB = +0.45 K (+0.5 K) interaction constant estimated for Dy-MOF (Tb-MOF)) and coupled to Ln ions in adjacent chains through dipolar antiferromagnetic interactions. The Dy MOF exhibits slow relaxation of magnetization through a thermally activated process, transitioning to quantum tunneling of the magnetization at low temperatures, while both compounds exhibit field-induced relaxation through a very slow, direct process. The maximum magnetic entropy changes (-ΔSmaxm) for an applied magnetic field change of 2-0 T are 5.71 J kg-1 K-1 and 4.78 J kg-1 K-1, for Dy and Tb MOFs, respectively, while the magnetocaloric effect (MCE) peak for both occurs at T ∼ 1.6 K, approximately double that for the Gd counterpart.
Collapse
Affiliation(s)
- Zhen Li
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - José Giner Planas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
| | - Elena Bartolomé
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
| |
Collapse
|
2
|
Shao D, Wan Y, Yang J, Ruan Z, Zhu J, Shi L. Assembly of dysprosium(III) cubanes in a metal-organic framework with an ecu topology and slow magnetic relaxation. Dalton Trans 2023; 52:17114-17118. [PMID: 37987159 DOI: 10.1039/d3dt03137c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A dysprosium(III) metal-organic framework constructed using dysprosium(III) cubanes as secondary building units has been reported to exhibit field-induced slow magnetic relaxation behavior and an unprecedented ecu topology, which is the first example of an 8-connected Ln-cubane-based framework material and a rare Dy4-MOF showing slow magnetic relaxation.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Yi Wan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Junlun Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
3
|
Feng J, Kong C, Chen Y, Cen P, Ding Y, Guo Y, Zhang F, Liu X. Lanthanide-MOFs as multi-responsive photoluminescence sensor for sensitively detecting Fe 3+, Cr 2O 72- and nitrofuran antibiotics. RSC Adv 2023; 13:26196-26202. [PMID: 37671001 PMCID: PMC10475880 DOI: 10.1039/d3ra03817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Fast and selective detection of contaminants plays a key role in meeting human health and environmental concerns. Herein, two groups of isostructural lanthanide MOFs, [Ln(Hpta)(oxalic acid)]·H2O (1-Eu, 2-Gd) and [Ln(pta)(oxalic acid)0.5(H2O)2]·2H2O (3-Eu, 4-Gd) (H2pta = 2-(4-pyridyl)-terephthalic acid, C2O4- = oxalic acid), were synthesized by solvothermal method. Single crystal X-ray diffraction reveals that 1 and 2 are 3D neutral frameworks, while 3 and 4 consist of 2D layers with parallelogram holes and stack into 3D networks through O-H⋯N and O-H⋯O hydrogen bonding interactions. All complexes remain crystalline and stable below 400 °C, suggesting preeminent thermostability. Noteworthily, only 3 shows excellent chemical stability in water and organic solvent. Therefore, the solid-state fluorescence spectrum was used to characterize 3 which exhibited intense red luminescence. The N active sites in the pore channels of 3 are conducive to displaying a distinct quenching effect for Fe3+ cations in aqueous solutions, Cr2O72- anions in DMF and DMA solutions, and nitrofuran antibiotics in the DMF solvent. Overall, 3 is a prospective luminescent sensor for detecting Fe3+, Cr2O72- and nitrofuran antibiotics.
Collapse
Affiliation(s)
- Jingjuan Feng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Cunding Kong
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yunhui Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Cen
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Yi Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Fengyuan Zhang
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
4
|
Wang Q, Yu YT, Wang JL, Li JN, Li NF, Fan X, Xu Y. Two Windmill-Shaped Ln 18 Nanoclusters Exhibiting High Magnetocaloric Effect and Luminescence. Inorg Chem 2023; 62:3162-3169. [PMID: 36734987 DOI: 10.1021/acs.inorgchem.2c04065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The self-assembly of the high-nuclearity Ln-exclusive nanoclusters is challenging but of significance due to its aesthetically pleasing architectures and far-reaching latent applications in magnetic cooling technologies. Herein, two novel high-nuclearity lanthanide nanoclusters were successfully synthesized under solvothermal conditions, formulated as {[Gd18(IN)20(HCOO)8(μ6-O)(μ3-OH)24(H2O)4]·4H2O}n and {[Eu18(IN)16(HCOO)8(CH3COO)4(μ6-O)(μ3-OH)24(H2O)4]·5H2O}n (abbreviated as Gd18 and Eu18, HIN = isonicotinic acid). Both of them possess novel and exquisite windmill-shaped cationic cores in the family of high-nuclearity Ln-exclusive nanoclusters. Remarkably, the adjacent second building units are interconnected into a three-dimensional (3D) metal-organic framework by IN- ligands. As expected, the abundant existence of GdIII ions endows Gd18 with a favorable magnetic entropy change at 2.0 K for ΔH = 7.0 T (-ΔSmmax = 40.0 J kg-1 K-1), and Eu18 displays the typical luminescence of EuIII ions.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ya-Ting Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jia-Nian Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Xinrong Fan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.,Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
5
|
Xue J, Wang Y, Yang G, Wang Y. Energy transfer, anticounterfeiting, white light emission and sensing in fine-regulating series of lanthanide metal-organic frameworks. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Manna K, Sutter JP, Natarajan S. Blue-Emitting Ligand-Mediated Assembly of Rare-Earth MOFs toward White-Light Emission, Sensing, Magnetic, and Catalytic Studies. Inorg Chem 2022; 61:16770-16785. [PMID: 36227059 DOI: 10.1021/acs.inorgchem.2c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New lanthanide carboxylate compounds with two- (2D) and three-dimensional (3D) structures have been prepared by employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as an organic linker. The compounds, [Ln(C14H8O6)(C7O3H4)·2H2O]·4(H2O), Ln = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy and [Ln(C7O3H4)3·(C3H7ON)·(H2O)]·2(H2O)(C3H7NO), Ln = La, Ce, Pr, have two- and three-dimensional structures, respectively. In all compounds, lanthanide ions are connected together, forming a dimer, which is connected by the 2,5-BPTA ligand. In the two-dimensional structure, there are two 2,5-BPTA moieties present, and in the three-dimensional structure, there are three 2,5-BPTA moieties present. The lanthanide centers are nine-coordinated, the 2D structure has a tricapped trigonal prismatic arrangement, and the 3D structure has a monocapped distorted square antiprismatic arrangement. The Pr compound forms in both 2D and 3D structures, whose formation depends on the time of the reaction (2 days─2D and 5-6 days─3D). The ligand emits in the blue region, and using the characteristic emission of Eu3+ (red) and Tb3+ (green) ions, we achieve white light emission in the (Y0.96Tb0.02Eu0.02) compound. The overall quantum yield for the white light emission is 28%. The strong green luminescence of the Tb3+-containing compound was employed to selectively sense the Cr3+ and Fe3+ ions in aqueous solution with limits of detection (LODs) at 0.41 and 8.6 ppm, respectively. The Tb compound was found to be a good heterogeneous catalyst for the Ullman-type O-arylation reaction between phenol and bromoarene with yields of 95%. Magnetic studies on the Gd-, Tb-, and Dy-containing compounds showed weak exchange interactions within the dimeric Ln2 units. The present work demonstrates the many utilities of the rare-earth-containing MOFs, especially toward white-light emission, metal-ion sensing, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jean-Pascal Sutter
- Laboratoire de Chime de Coordination du CNRS, Université de Toulouse, CNRS 205 route de Narbonne, 31077 Toulouse, France
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Synthesis, Crystal Structures, Photoluminescence and Magnetic Properties of Lanthanide(III) Complexes Based on 2-(Thiophen-2-ylselanyl)acetic Acid Ligand. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Slow magnetic relaxation in a 3D dysprosium(III)-fluoro-oxalate framework containing zig-zag [Dy-F] chains. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zhang C, Qin Y, Duan L, Wang L, Wu Y, Guo Y, Song W, Liu X. pH-Dependent formation of three porous In(III)-MOFs: framework diversity and selective gas adsorption. Dalton Trans 2021; 51:473-477. [PMID: 34929729 DOI: 10.1039/d1dt02935e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-Dependent self-assembly and structural transformation have been observed in a series of porous In(III)-MOFs, H3O[In3(pta)4(OH)2]·10H2O (NXU-1), [In(pta)2]·C3H10N (NXU-2) and [In(pta)2]·C3H10N (NXU-3) (H2pta = 2-(4-pyridyl)-terephthalic acid). The structural diversities of NXU-1-3 reveal that the pH value of the reaction plays a key role in the assembly of In-MOFs. NXU-1 with excellent stability exhibits highly selective CO2 adsorption over CH4 as compared to NXU-2 and NXU-3, owing to the presence of abundant multiple active sites unveiled by theoretical calculations.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yuanyuan Qin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Lijuan Duan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Lu Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Sardaru MC, Marangoci NL, Shova S, Bejan D. Novel Lanthanide (III) Complexes Derived from an Imidazole-Biphenyl-Carboxylate Ligand: Synthesis, Structure and Luminescence Properties. Molecules 2021; 26:molecules26226942. [PMID: 34834036 PMCID: PMC8625298 DOI: 10.3390/molecules26226942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
A series of neutral mononuclear lanthanide complexes [Ln(HL)2(NO3)3] (Ln = La, Ce, Nd, Eu, Gd, Dy, Ho) with rigid bidentate ligand, HL (4'-(1H-imidazol-1-yl)biphenyl-4-carboxylic acid) were synthesized under solvothermal conditions. The coordination compounds have been characterized by infrared spectroscopy, thermogravimetry, powder X-ray diffraction and elemental analysis. According to X-ray diffraction, all the complexes are a series of isostructural compounds crystallized in the P2/n monoclinic space group. Additionally, solid-state luminescence measurements of all complexes show that [Eu(HL)2(NO3)3] complex displays the characteristic emission peaks of Eu(III) ion at 593, 597, 615, and 651 nm.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania; (M.-C.S.); (N.L.M.)
| | - Narcisa Laura Marangoci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania; (M.-C.S.); (N.L.M.)
| | - Sergiu Shova
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| | - Dana Bejan
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania; (M.-C.S.); (N.L.M.)
- Correspondence:
| |
Collapse
|
11
|
Hu JJ, Li YG, Wen HR, Liu SJ, Peng Y, Liu CM. A family of lanthanide metal-organic frameworks based on a redox-active tetrathiafulvalene-dicarboxylate ligand showing slow relaxation of magnetisation and electronic conductivity. Dalton Trans 2021; 50:14714-14723. [PMID: 34586106 DOI: 10.1039/d1dt01851e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the redox-active tetrathiafulvalene ligand and lanthanide ions is an important approach to prepare photo-electro-magnetic multifunctional metal-organic framework materials. A series of isostructural lanthanide metal-organic frameworks (Ln-MOFs) based on the in situ generated tetrathiafulvalene dicarboxylate (TTF-DC) ligand, {[Ln4(TTF-DC)6(DMF)4(H2O)2]·4DMF}n (Ln = Gd (1-Gd), Tb (1-Tb), Dy (1-Dy) and Er (1-Er)), was synthesized and characterized. These Ln-MOFs display tunable redox-active properties and semiconductor performance, and their electronic conductivities have been significantly improved after oxidation. All MOFs except 2-Tb exhibit slow magnetic relaxation under an applied dc field. 1-Dy and 2-Dy show field-induced single-molecule magnet (SMM) behaviour with energy barriers (Ueff) of 30.77 K (τ0 = 5.23 × 10-8) and 26.41 K (1.04 × 10-8 s), respectively.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Yu-Guang Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China.
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
12
|
Yang Y, Zhu W, Sun B, Hu H, Li X, Bao S, Su Z. Two fluorescent cerium metal-organic frameworks for the “turn-on” sensing of AA with high sensitivity as well as biological and electrochemical properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Király N, Zeleňák V, Lenártová N, Zeleňáková A, Čižmár E, Almáši M, Meynen V, Hovan A, Gyepes R. Novel Lanthanide(III) Porphyrin-Based Metal-Organic Frameworks: Structure, Gas Adsorption, and Magnetic Properties. ACS OMEGA 2021; 6:24637-24649. [PMID: 34604646 PMCID: PMC8482518 DOI: 10.1021/acsomega.1c03327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The present work focuses on the hydrothermal synthesis and properties of porous coordination polymers of metal-porphyrin framework (MPF) type, namely, {[Pr4(H2TPPS)3]·11H2O} n (UPJS-10), {[Eu/Sm(H2TPPS)]·H3O+·16H2O} n (UPJS-11), and {[Ce4(H2TPPS)3]·11H2O} n (UPJS-12) (H2TPPS = 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakisbenzenesulfonate(4-)). The compounds were characterized using several analytical techniques: infrared spectroscopy, thermogravimetric measurements, elemental analysis, gas adsorption measurements, and single-crystal structure analysis (SXRD). The results of SXRD revealed a three-dimensional open porous framework containing crossing cavities propagating along all crystallographic axes. Coordination of H2TPPS4- ligands with Ln(III) ions leads to the formation of 1D polymeric chains propagating along the c crystallographic axis. Argon sorption measurements at -186 °C show that the activated MPFs have apparent BET surface areas of 260 m2 g-1 (UPJS-10) and 230 m2 g-1 (UPJS-12). Carbon dioxide adsorption isotherms at 0 °C show adsorption capacities up to 1 bar of 9.8 wt % for UPJS-10 and 8.6 wt % for UPJS-12. At a temperature of 20 °C, the respective CO2 adsorption capacities decreased to 6.95 and 5.99 wt %, respectively. The magnetic properties of UPJS-10 are characterized by the presence of a close-lying nonmagnetic ground singlet and excited doublet states in the electronic spectrum of Pr(III) ions. A much larger energy difference was suggested between the two lowest Kramers doublets of Ce(III) ions in UPJS-12. Finally, the analysis of X-band EPR spectra revealed the presence of radical spins, which were tentatively assigned to be originating from the porphyrin ligands.
Collapse
Affiliation(s)
- Nikolas Király
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Vladimír Zeleňák
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Nina Lenártová
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Adriana Zeleňáková
- Institute
of Physics, P. J. Šafárik
University, Park Angelinum 9, Košice SK-04154, Slovakia
| | - Erik Čižmár
- Institute
of Physics, P. J. Šafárik
University, Park Angelinum 9, Košice SK-04154, Slovakia
| | - Miroslav Almáši
- Department
of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, Košice SK-041 54, Slovakia
| | - Vera Meynen
- Laboratory
of Adsorption and Catalysis, University
of Antwerp, Universiteitsplein
1, Wilrijk B-2610, Belgium
| | - Andrej Hovan
- Institute
of Physics, P. J. Šafárik
University, Park Angelinum 9, Košice SK-04154, Slovakia
| | - Róbert Gyepes
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague CZ-128
43, Czech Republic
| |
Collapse
|
14
|
Benamara N, Diop M, Leuvrey C, Lenertz M, Gilliot P, Gallart M, Bolvin H, Setifi F, Rogez G, Rabu P, Delahaye E. Octahedral Hexachloro Environment of Dy
3+
with Slow Magnetic Relaxation and Luminescent Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nesrine Benamara
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures Université Ferhat Abbas Sétif 1 Sétif 19000 Algeria
| | - Mayoro Diop
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
| | - Cédric Leuvrey
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
| | - Marc Lenertz
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
| | - Pierre Gilliot
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
| | - Mathieu Gallart
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
| | - Hélène Bolvin
- Laboratoire de Chimie et de Physique Quantiques Université de Toulouse and CNRS 31062 Toulouse France
| | - Fatima Setifi
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures Université Ferhat Abbas Sétif 1 Sétif 19000 Algeria
| | - Guillaume Rogez
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
| | - Emilie Delahaye
- Institut de Physique et Chimie des Matériaux de Strasbourg – UMR 7504 Université de Strasbourg and CNRS 67034 Strasbourg France
- Laboratoire de Chimie de Coordination Université de Toulouse and CNRS 31077 Toulouse France
| |
Collapse
|
15
|
Wang YN, Wang SD, Xu L, Wang SY, Zhang JM. Two Cu(II) coordination polymers assembled by 5-(3,4-dicarboxylphenoxy) nicotic acid: Synthesis, crystal structure and photoluminescence property. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Li SF, Wang Q, Li YP, Geng X, Zhao L, He M, Du L, Zhao QH. Different Phenomena in Magnetic/Electrical Properties of Co(II) and Ni(II) Isomorphous MOFs. ACS OMEGA 2021; 6:9213-9221. [PMID: 33842790 PMCID: PMC8028129 DOI: 10.1021/acsomega.1c00574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Two unprecedented and stable metal-organic frameworks, {[Co2(H2O)2(L)(OH)]·2.5H2O·0.5DMF} n (1) and {[Ni2(H2O)2(L)(OH)]·1.75H2O} n (2), have been synthesized (H3L = 5-(5-carboxy-pyridin-3-yloxy)-isophthalic acid, DMF = N,N-dimethylformamide). Structural analysis shows that 1 and 2 are heteronuclear isomorphous, possessing a three-dimensional (3D) (4,8)-connected flu/fluorite topological framework formed through the interconnection of tetranuclear butterfly {M4(COO)6(OH)2} clusters and the ligands. Although the frameworks of these two compounds are similar, their magnetic properties are different. Compound 1 exhibits an antiferromagnetic interaction in the high-temperature region, while 2 shows a weak ferromagnetic interaction in the whole-temperature region. Furthermore, considering the presence of hydroxyl groups and water molecules in the frameworks, we tested their proton conductivity. The efficient proton transfer pathway in the framework endowed 1 and 2 with excellent proton conductivities of 9.07 × 10-5 and 1.29 × 10-4 S·cm-1 at 363 K and 98% relative humidity (RH), respectively.
Collapse
Affiliation(s)
- Shi-Fen Li
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education; Yunnan Research & Development Center for Natural Products;
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Quan Wang
- Yunnan
Provincial Key Laboratory of Forensic Science, Yunnan Police College, Kunming 650223, P. R. China
| | - Ye-Ping Li
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education; Yunnan Research & Development Center for Natural Products;
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xiao Geng
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education; Yunnan Research & Development Center for Natural Products;
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - LiJia Zhao
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education; Yunnan Research & Development Center for Natural Products;
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Mei He
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education; Yunnan Research & Development Center for Natural Products;
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lin Du
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education; Yunnan Research & Development Center for Natural Products;
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qi-Hua Zhao
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education; Yunnan Research & Development Center for Natural Products;
School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|