1
|
Zhang Z, Luo Y, Ma Y, Zhou Y, Zhu D, Shen W, Liu J. Photocatalytic manipulation of Ca 2+ signaling for regulating cellular and animal behaviors via MOF-enabled H 2O 2 generation. SCIENCE ADVANCES 2024; 10:eadl0263. [PMID: 38640246 PMCID: PMC11029810 DOI: 10.1126/sciadv.adl0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The in situ generation of H2O2 in cells in response to external stimulation has exceptional advantages in modulating intracellular Ca2+ dynamics, including high controllability and biological safety, but has been rarely explored. Here, we develop photocatalyst-based metal-organic frameworks (DCSA-MOFs) to modulate Ca2+ responses in cells, multicellular spheroids, and organs. By virtue of the efficient photocatalytic oxygen reduction to H2O2 without sacrificial agents, photoexcited DCSA-MOFs can rapidly trigger Ca2+ outflow from the endoplasmic reticulum with single-cell precision in a repeatable and controllable manner, enabling the propagation of intercellular Ca2+ waves (ICW) over long distances in two-dimensional and three-dimensional cell cultures. After photoexcitation, ICWs induced by DCSA-MOFs can activate neural activities in the optical tectum of tadpoles and thighs of spinal frogs, eliciting the corresponding motor behaviors. Our study offers a versatile optical nongenetic modulation technique that enables remote, repeatable, and controlled manipulation of cellular and animal behaviors.
Collapse
Affiliation(s)
- Zherui Zhang
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yuanhong Ma
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaofeng Zhou
- Westlake University, Shilongshan Rd. Cloud Town, Xihu District, Hangzhou, Zhejiang, China
| | - Dingcheng Zhu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Junqiu Liu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Gogesch FS, Bauer L, Vollstädt FD, Linseis M, Senft L, Ivanović-Burmazović I, Winter RF. Pyrene fluorescence in 2,7-di(4-phenylethynyl)pyrene-bridged bis(alkenylruthenium) complexes. Dalton Trans 2023; 53:251-259. [PMID: 38037827 DOI: 10.1039/d3dt03114d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Complexes PyrDPE-RuCl and PyrDPE-Ruacac with a π-extended 2,7-di(4-phenylethynyl)pyrene linker undergo simultaneous one-electron oxidations of their {Ru}-styryl entities. The absence of an intervalence charge-transfer (IVCT) band at intermediate stages, where the mixed-valent, singly oxidized radical cation is present, and spin density confinement to the terminal styryl ruthenium site(s) are tokens of a lack of electronic coupling between the {Ru} entities across the π-conjugated linker. The close similarity of the linker-based π → π* bands in the complexes and the free ligand and their insensitivity towards oxidations at the terminal sites indicate that the central pyrenyl fluorophore is electronically decoupled from the electron-rich {Ru}-styryl termini. As a consequence, the complexes offer stable pyrene-based fluorescence emissions at 77 K, which are red-shifted from that of the linker.
Collapse
Affiliation(s)
- Franciska S Gogesch
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lea Bauer
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Florian D Vollstädt
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Laura Senft
- Fachbereich Chemie, Ludwig-Maximilian-Universität München, Butenandtstraße 5-13, Haus D, 81377 München, Germany
| | - Ivana Ivanović-Burmazović
- Fachbereich Chemie, Ludwig-Maximilian-Universität München, Butenandtstraße 5-13, Haus D, 81377 München, Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
3
|
Tanaka Y, Kawano R, Akita M. Acene Size-Dependent Transition of The Radical Centers From the Metal to The Acene Parts In Monocationic Dinuclear (Diethynylacene)diyl Complexes. Chemistry 2022; 28:e202201358. [PMID: 35680560 PMCID: PMC9804824 DOI: 10.1002/chem.202201358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 01/09/2023]
Abstract
Controlling radical localization/delocalization is important for functional materials. The present paper describes synthesis and results of electrochemical, spectroscopic, and theoretical studies of diruthenium (p-diethynylacene)diyl complexes, Me3 Si-(C≡C)2 -Ru(dppe)2 -C≡C-Ar-C≡C-Ru(dppe)2 -(C≡C)2 -SiMe3 (1-6) (dppe: 1,2-bis(diphenylphosphino)ethane), and their monocationic radical species ([1]+ -[6]+ ). The HOMO-LUMO energy gaps can be finely tuned by the acene rings in the bridging ligands installed, as indicated by the absorption maxima of the electronic spectra of 1-6 ranging from the UV region even to the NIR region. The cationic species [1]+ -[6]+ show two characteristic NIR bands, which are ascribed to the charge resonance (CR) and π-π* transition bands, as revealed by spectroelectrochemistry. Expansion of the acene rings in [1]+ -[6]+ causes (1) blue shifts of the CR bands and red shifts of the π-π* transition bands and (2) charge localization on the acene parts as evidenced by the ESR, DFT and TD-DFT analyses. Notably, the monocationic complexes of the larger acene derivatives are characterized as the non-classical acene-localized radicals.
Collapse
Affiliation(s)
- Yuya Tanaka
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Reo Kawano
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| |
Collapse
|
4
|
Sil A, Roy SS, Mishra VK, Islam SN, Mishra S, Patra SK. Modulation of Electrochemical and Spectroscopic Properties in Ru(II)‐Terpyridyl End‐Capped Homobimetallic Organometallic Complexes by Varying π‐Conjugated Organic Spacers. ChemistrySelect 2022. [DOI: 10.1002/slct.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Sil
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Sourav Saha Roy
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vipin Kumar Mishra
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Sk Najmul Islam
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Sabyashachi Mishra
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
- Centre for Computational and Data Sciences Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Sanjib K. Patra
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
5
|
Jiang P, Yang X, Cao N, Zhu X, Zhang F, Liu SH, Ou YP. Tuning iron-amine electronic coupling by different aromatic bridges based on ferrocene-ethynyl-triarylamine systems. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|