1
|
Bhowmik S, Sengupta A, Mukherjee R. Ni(II) and Pd(II) complexes of a new redox-active pentadentate azo-appended 2-aminophenol ligand: Pd(II)-assisted intraligand cyclization forms a phenoxazinyl ring. Dalton Trans 2024; 53:14046-14064. [PMID: 39109537 DOI: 10.1039/d4dt01513d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Square planar complexes of Ni(II) and Pd(II) of a new redox-active pentadentate azo-appended 2-aminophenol ligand (H4L = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino-ortho-azobenzene) in three accessible redox levels [amidophenolate(2-), semiquinonate(1-) π radical, and quinone(0)] were synthesized. The coordinated HL(3-) ligand provides four donor sites [two N(iminophenolates), an N'(azo), and an O(phenolate)], while the phenolic OH group remains free in the three complexes. Cyclic voltammetry on complex [Ni(L)] 1 and its corresponding Pd(II) analogue [Pd(L)] 2 in CH2Cl2 displayed three redox responses (two oxidative at E1/2 = 0.06 V and Epa (anodic peak potential) = 0.80 V and one reductive at -0.77 V for 1 and at E1/2 = 0.08 V and Epa = 0.85 V and at -0.74 V for 2vs. Fc+/Fc). The chemical oxidation of 1 with AgSbF6 afforded [Ni(L)]SbF6·2CH2Cl2 (3·2CH2Cl2). Complex [Pd(L*)] 4, which is coordinated by a phenoxazinyl derivative of L(4-), was obtained via intraligand cyclization in the parent complex 2 under basic oxidizing conditions. The molecular structures of 1, 2, 3·2CH2Cl2 and 4 were elucidated through X-ray crystallography at 100 K. Characterization using 1H NMR, X-band EPR, and UV-VIS-NIR spectroscopy established that the complexes have [NiII{(LISQ)˙2-}] 1, [PdII{(LISQ)˙2-}] 2, [NiII{(LIBQ)-}]SbF6/1+SbF6-(3), and [PdII{(L*AP)˙2-}] 4 electronic states. Complexes 1, 2, and 4 possess paramagnetic St (total spin) = 1/2 ground-state, whereas 3 is diamagnetic (St = 0). Density functional theory (DFT) electronic structural calculations at the B3LYP level rationalized the observed experimental results. Time-dependent (TD)-DFT calculations allowed us to identify the nature of the observed absorption spectra.
Collapse
Affiliation(s)
- Saumitra Bhowmik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, Jharkhand 826004, India
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
2
|
He Y, Huang YY, Zhu XQ, Su SD, Xu QD, Fu JH, Song Y, Wu XT, Sheng TL. Electronic Transition and Magnetic Coupling Regulation in Trimetallic Complexes Featuring a New Bridging Ligand Obtained by Oxidative Addition. Inorg Chem 2023. [PMID: 37452753 DOI: 10.1021/acs.inorgchem.3c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A series of trimetallic complexes [FeIII(μ-L)(py)]2MII(py)n (n = 2, MII = MnII, 1; FeII, 2; CoII, 3; ZnII, 4; n = 3, MII = CdII, 5) with a new bridging ligand L4- (deprotonated 1,2-N1,N2-bis(2-mercaptoanil) oxalimidic acid) were synthesized and fully characterized by elemental analysis, single-crystal X-ray crystallography, IR, and Mössbauer spectra. Interestingly, the bridging ligand was obtained by oxidative addition of the (gma•)3- ligand from the mononuclear precursor Fe(gma)py (gma = glyoxal-bis(2-mercaptoanil)). In the obtained complexes, the bridging ligand L4- coordinates to the terminal FeIII ions (intermediate-spin with SFe = 3/2) by the N, S atoms, and coordinate to the central metal MII ion by the four O atoms. The resonance structure of the bridging ligand can be described as the two 4π-electron delocalized systems connected by one single-bond (C1-C2), which is different from the electronic structure of the precursor Fe(gma)py. Remarkably, the magnetic coupling interaction can be regulated through the central metal. The ferromagnetic coupling constant J gradually decreases as MII changes from FeII to CoII and MnII, while the paramagnetic behaviors are presented when MII = ZnII and CdII, confirmed by the magnetic susceptibility measurements and further supported by using the PHI program. Furthermore, the bridging ligand to the terminal FeIII charge transfer (LMCT) transitions emerged in all complexes but the central FeII to terminal FeIII charge transfer (MMCT) only presented in complex 2, strongly supported by the UV/vis-NIR electronic spectra and TDDFT calculations.
Collapse
Affiliation(s)
- Yong He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Quan Zhu
- Department of Criminal Investigation, Fujian Police College, Fuzhou 350007, P. R. China
| | - Shao-Dong Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Qing-Dou Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jin-Hui Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
3
|
Sandoval-Pauker C, Pinter B. Quasi-Restricted Orbital Description of the Copper(I) Photoredox Catalytic Cycle. J Chem Phys 2022; 157:074306. [DOI: 10.1063/5.0094380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this computational study, the electronic structure changes along the oxidative and reductive quenching cycles of a homoleptic and a heteroleptic prototype Cu(I) photoredox catalyst, namely [Cu(dmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline) and [Cu(phen)(POP)]+ (POP = bis[2-(diphenylphosphino)phenyl]ether) are scrutinized and characterized using quasi-restricted orbitals (QRO), electron density differences and spin densities. After validating our density functional theory-based computational protocol, the equilibrium geometries and wavefunctions (using QROs and atom/fragment compositions) of the four states involved in photoredox cycle (S0, T1, Dox and Dred) are systematically and thoroughly described. The formal ground and excited state ligand- and metal-centered redox events are substantiated by the QRO description of the open-shell triplet 3MLCT (d9L-1), Dox (d9L0) and Dred (d10L-1) species and the corresponding structural changes, e.g., flattening distortion, shortening/elongation of Cu-N/Cu-P bonds, are rationalized in terms of the underlying electronic structure transformations. Amongst others, we reveal the molecular-scale delocalization of the ligand-centered radical in the a 3MLCT (d9L-1) and Dred (d9L-1) states of homoleptic [Cu(dmp)2]+ and its localization to the redox-active phenanthroline ligand in the case of heteroleptic [Cu(phen)(POP)]+.
Collapse
Affiliation(s)
- Christian Sandoval-Pauker
- The University of Texas at El Paso Department of Chemistry and Biochemistry, United States of America
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, The University of Texas at El Paso Department of Chemistry and Biochemistry, United States of America
| |
Collapse
|
4
|
Mukhopadhyay N, Sengupta A, Vijay AK, Lloret F, Mukherjee R. Ni(II) complexes of a new tetradentate NN'N''O picolinoyl-1,2-phenylenediamide-phenolate redox-active ligand at different redox levels. Dalton Trans 2022; 51:9017-9029. [PMID: 35638812 DOI: 10.1039/d2dt01043g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three square planar nickel(II) complexes of a new asymmetric tetradentate redox-active ligand H3L2 in its deprotonated form, at three redox levels, open-shell semiquinonate(1-) π radical, quinone(0) and closed-shell dianion of its 2-aminophenolate part, have been synthesized. The coordinated ligand provides N (pyridine) and N' and N'' (carboxamide and 1,2-phenylenediamide, respectively) and O (phenolate) donor sites. Cyclic voltammetry on the parent complex [Ni(L2)] 1 in CH2Cl2 established a three-membered electron-transfer series (oxidative response at E1/2 = 0.57 V and reductive response at -0.32 V vs. SCE) consisting of neutral, monocationic and monoanionic [Ni(L2)]z (z = 0, 1+ and 1-). Oxidation of 1 with AgSbF6 affords [Ni(L2)](SbF6) (2) and reduction of 1 with cobaltocene yields [Co(η5-C5H5)2][Ni(L2)] (3). The molecular structures of 1·CH3CN, 2·0.5CH2Cl2 and 3·C6H6 have been determined by X-ray crystallography at 100 K. Characterization by 1H NMR, X-band EPR (gav = 2.006 (solid); 2.008 (CH2Cl2-C6H5CH3 glass); 80 K) and UV-VIS-NIR spectral properties established that 1, 2 and 3 have [NiII{(L2)˙2-}], [NiII{(L2)-}]+/1+ and [NiII{(L2)3-}]-/1- electronic states, respectively. Thus, the redox processes are ligand-centred. While 1 possesses paramagnetic St (total spin) = 1/2, 2 and 3 possess diamagnetic ground-state St = 0. Interestingly, the variable-temperature (2-300 K) magnetic measurement reveals that 1 with the St = 1/2 ground state attains the antiferromagnetic St = 0 state at a very low temperature, due to weak noncovalent interactions via π-π stacking. Density functional theory (DFT) electronic structural calculations at the B3LYP level of theory rationalized the experimental results. In the UV-VIS-NIR spectra, broad absorptions are recorded for 1 and 2 in the range of 800-1600 nm; however, such an absorption is absent for 3. Time-dependent (TD)-DFT calculations provide a very good fit with the experimental spectra and allow us to identify the observed electronic transitions.
Collapse
Affiliation(s)
- Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Arunava Sengupta
- Department of Chemistry, Techno India University, West Bengal, Kolkata 700091, India
| | - Aswin Kottapurath Vijay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980 Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
5
|
Amunugama S, Asempa E, Tripathi RC, Wanniarachchi D, Baydoun H, Hoffmann P, Jakubikova E, Verani CN. Electron transport through a (terpyridine)ruthenium metallo-surfactant containing a redox-active aminocatechol derivative. Dalton Trans 2022; 51:8425-8436. [PMID: 35593395 DOI: 10.1039/d2dt00938b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aiming to develop a new class of metallosurfactants with unidirectional electron transfer properties, a (terpyridine) ruthenium complex containing a semiquinone derivative L2, namely [RuIII(Lterpy)(L2)Cl]PF6 (1), was synthesized and structurally characterized as a solid and in solution. The electronic and redox behaviour of 1 was studied experimentally as well as by means of DFT methods, and is indicative of significant orbital mixing and overlap between metal and ligands. The complex forms stable Pockels-Langmuir films at the air-water interface and allows for the formation of thin films onto gold electrodes to prepare nanoscale Au|LB 1|Au junctions for current-voltage (I/V) analysis. Complex 1 shows asymmetric electron transfer with a maximum rectification ratio of 32 based on tunnelling through MOs of the aminocatechol derivative.
Collapse
Affiliation(s)
- Samudra Amunugama
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - Eyram Asempa
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | - Habib Baydoun
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - Peter Hoffmann
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA.
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | - Cláudio N Verani
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Ali A, Bhowmik S, Barman SK, Mukhopadhyay N, Glüer Nee Schiewer CE, Lloret F, Meyer F, Mukherjee R. Iron(III) Complexes of a Hexadentate Thioether-Appended 2-Aminophenol Ligand: Redox-Driven Spin State Switchover. Inorg Chem 2022; 61:5292-5308. [PMID: 35312298 DOI: 10.1021/acs.inorgchem.1c03992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A green complex [Fe(L3)] (1), supported by the deprotonated form of a hexadentate noninnocent redox-active thioether-appended 2-aminophenolate ligand (H4L3 = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)ethane), has been synthesized and structurally characterized at 100(2) K and 298(2) K. In CH2Cl2, 1 displays two oxidative and a reductive one-electron redox processes at E1/2 values of -0.52 and 0.20 V, and -0.85 V versus the Fc+/Fc redox couple, respectively. The one-electron oxidized 1+ and one-electron reduced 1- forms, isolated as a blackish-blue solid 1(PF6)·CH2Cl2 (2) and a gray solid [Co(η5-C5H5)2]1·DMF (3), have been structurally characterized at 100(2) K. Structural parameters at 100 K of the ligand backbone and metrical oxidation state values unambiguously establish the electronic states as [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] (1) (two tridentate halves are electronically asymmetric-ligand mixed-valency), [FeIII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}]+ (1+), and [FeIII{(LAPO,N)2-}{(LAPO,N)2-}{(LS,S)0}]- (1-) [dianionic 2-amidophenolate(2-) (LAPO,N)2- and monoanionic 2-iminobenzosemiquinonate(1-) π-radical (Srad = 1/2) (LISQ)•- redox level]. Mössbauer spectral data of 1 at 295, 200, and 80 K reveal that it has a major low-spin (ls)-Fe(III) and a minor ls-Fe(II) component (redox isomers), and at 7 K, the major component exists exclusively. Thus, in 1, the occurrence of a thermally driven valence-tautomeric (VT) equilibrium (asymmetric) [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] ⇌ (symmetric) [FeII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}] (80-295 K) is implicated. Mössbauer spectral parameters unequivocally establish that 1+ is a ls-Fe(III) complex. In contrast, the monoanion 1- contains a high-spin (hs)-Fe(III) center (SFe = 5/2), as is deduced from its Mössbauer and EPR spectra. Complexes 1-3 possess total spin ground states St = 0, 1/2, and 5/2, respectively, based on 1H NMR and EPR spectra, the variable-temperature (2-300 K) magnetic behavior of 2, and the μeff value of 3 at 300 K. Broken-symmetry density functional theory (DFT) calculations at the B3LYP-level of theory reveal that the unpaired electron in 1+/2 is due to the (LISQ)•- redox level [ls-Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (LISQ)•- radicals (Srad = 1/2)], and 1-/3 is a hs-Fe(III) complex, supported by (L3)4- with two-halves in the (LAP)2- redox level. Complex 1 can have either a symmetric or asymmetric electronic state. As per DFT calculation, the former state is stabilized by -3.9 kcal/mol over the latter (DFT usually stabilizes electronically symmetric structure). Time-dependent (TD)-DFT calculations shed light on the origin of observed UV-vis-NIR spectral absorptions for 1-3 and corroborate the results of spectroelectrochemical experiments (300-1100 nm) on 1 (CH2Cl2; 298 K). Variable-temperature (218-298 K; CH2Cl2) absorption spectral (400-1000 nm) studies on 1 justify the presence of VT equilibrium in the solution-state.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saumitra Bhowmik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia, Polígono de la Coma, s/n, Paterna, València 46980, Spain
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | |
Collapse
|
7
|
Sarkar P, Sarmah A, Mukherjee C. Where is the unpaired electron density? A combined experimental and theoretical finding on the geometric and electronic structures of the Co( iii) and Mn( iv) complexes of the unsymmetrical non-innocent pincer ONS ligand. Dalton Trans 2022; 51:16723-16732. [DOI: 10.1039/d2dt01868c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometry and electronic structures of the Co and Mn complexes of the pincer H3LONS ligand composed of both hard and soft donor atoms at the coordinating sites are reported.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amrit Sarmah
- Department of Molecular Modelling, Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
8
|
Switchover from NiIIN2O2 to NiIIN2O2S2 coordination triggered by the redox behaviour of a non-innocent 2-aminophenolate ligand. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01961-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Dille SA, Colston KJ, Ratvasky SC, Pu J, Basu P. Interligand communication in a metal mediated LL'CT system - a case study. RSC Adv 2021; 11:24381-24386. [PMID: 34354823 PMCID: PMC8285364 DOI: 10.1039/d1ra04716g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
A series of oxo-Mo(iv) complexes, [MoO(Dt2−)(Dt0)] (where Dt2− = benzene-1,2-dithiol (bdt), toluene-3,4-dithiol (tdt), quinoxaline-2,3-dithiol (qdt), or 3,6-dichloro-benzene-1,2-dithiol (bdtCl2); Dt0 = N,N′-dimethylpiperazine-2,3-dithione (Me2Dt0) or N,N′-diisopropylpiperazine-2,3-dithione (iPr2Dt0)), possessing a fully oxidized and a fully reduced dithiolene ligand have been synthesized and characterized. The assigned oxidation states of coordinated dithiolene ligands are supported with spectral and crystallographic data. The molecular structure of [MoO(tdt)(iPr2Dt0)] (6) demonstrates a large ligand fold angle of 62.6° along the S⋯S vector of the Dt0 ligand. The electronic structure of this system is probed by density functional theory (DFT) calculations. The HOMO is largely localized on the Dt2− ligand while virtual orbitals are mostly Mo and Dt0 in character. Modeling the electronic spectrum of 6 with time dependent (TD) DFT calculations attributes the intense low energy transition at ∼18 000 cm−1 to a ligand-to-ligand charge transfer (LL′CT). The electron density difference map (EDDM) for the low energy transition depicts the electron rich Dt2− ligand donating charge density to the redox-active orbitals of the electron deficient Dt0 ligand. Electronic communication between dithiolene ligands is facilitated by a Mo-monooxo center and distortion about its primary coordination sphere. The interligand communication between non-innocent dithiolene ligands of different oxidation states has been described in a Mo system. The fully reduced ene-dithiolate (Dt2−) acts as a donor moiety to the oxidized dithione (Dt0) in an LL′CT process.![]()
Collapse
Affiliation(s)
- Sara A Dille
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Kyle J Colston
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Stephen C Ratvasky
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh PA 15282 USA
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis Indianapolis IN 46202 USA
| |
Collapse
|