1
|
Rogacz K, Magott M, Baś S, Foltyn M, Rams M, Pinkowicz D. A photochromic trinuclear dysprosium(iii) single-molecule magnet with two distinct relaxation processes. RSC Adv 2024; 14:14515-14522. [PMID: 38708114 PMCID: PMC11064518 DOI: 10.1039/d4ra01645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Multifunctional molecules responsive to light are highly desired as components for the construction of remotely controlled nanodevices. Here we present a DyIII single molecule magnet (SMM) comprising dithienylethene (dte) photochromic bridging ligands in the form of a pyridine (py) derivative: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclo-pentene (dtepy). The title trinuclear compound {[DyIII(BHT)3]3(dtepy)2}·4C5H12 (1) was synthesized by combining the low-coordinate dysprosium complexes DyIII(BHT)3 (BHT = 2,6-di-tert-butyl-4-methylphenolate) with dtepy bridging ligands in the 'open' form using n-pentane as a completely inert solvent. The trinuclear molecule comprises two different DyIII centers due to its quasi-linear geometry: a central trigonal bipyramidal DyIII ion and two peripheral ones with an approximate trigonal pyramidal geometry. Thanks to that, 1 shows two types of SMM behavior which is slightly affected by the photoisomerization of the photochromic dtepy bridges. The impact of the photoisomerization on the magnetization dynamics was studied by means of alternating current (AC) magnetic susceptibility measurements for the 'open' and 'closed' forms of the molecules. The changes between the 'open' and 'closed' isomers were further investigated by IR and UV-vis spectroscopy, suggesting the co-existence of the ligand-related photochromism and single-molecule magnet behavior in 1. However, the powder X-ray diffraction studies indicate loss of structural order in the first photoisomerization step preventing in-depth studies.
Collapse
Affiliation(s)
- Katarzyna Rogacz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Michał Magott
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Sebastian Baś
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Magdalena Foltyn
- Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Michał Rams
- Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
2
|
Mao PD, Zhang SH, Yao NT, Sun HY, Yan FF, Zhang YQ, Meng YS, Liu T. Regulating Magnetic Relaxations of Cyano-Bridged {Dy III Mo V } Systems by Tuning the N-Sites in β-Diketone Ligands. Chemistry 2023; 29:e202301262. [PMID: 37272418 DOI: 10.1002/chem.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 ⋅ 6H2 O and K4 Mo(CN)8 ⋅ 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} ⋅ 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 ⋅ 2CH3 OH ⋅ 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] ⋅ H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} ⋅ 2H2 O⋅CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the β-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.
Collapse
Affiliation(s)
- Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Hui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Wang J, Sun CY, Zheng Q, Wang DQ, Chen YT, Ju JF, Sun TM, Cui Y, Ding Y, Tang YF. Lanthanide Single-molecule Magnets: Synthetic Strategy, Structures, Properties and Recent Advances. Chem Asian J 2023; 18:e202201297. [PMID: 36802202 DOI: 10.1002/asia.202201297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Single-molecule magnets (SMMs) show wide potential applications in the field of ultrahigh-density storage materials, quantum computing, spintronics, and so on. Lanthanide (Ln) SMMs, as an important category of SMMs, open up a promising prospect due to their large magnetic moments and huge magnetic anisotropy. However, the construction of high performance for Ln SMMs remains an enormous challenge. Although remarkable advances are focused on the topic of Ln SMMs, the research on Ln SMMs with different nuclear numbers is still deficient. Therefore, this review summarizes the design strategies for the construction of Ln SMMs, as well as the metal skeleton types. Furthermore, we collect reported Ln SMMs with mononuclearity, dinuclearity, and multinuclearity (three or more Ln spin centers) and the SMM properties including energy barrier (Ueff ) and pre-exponential factor (τ0 ) are described. Finally, Ln SMMs with low-nuclearity SMMs, especially for single-ion magnets (SIMs), are highlighted to understand the correlations between structures and magnetic behavior of the detail SMM properties are described. We expect the review can shed light on the future developments of high-performance Ln SMMs.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China.,Nantong Key Lab of Intelligent and New Energy Materials, Nantong, Jiangsu 226019, P. R. China
| | - Cheng-Yuan Sun
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Qi Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Dan-Qi Wang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yu-Ting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Jian-Feng Ju
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Tong-Ming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Ying Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yan Ding
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yan-Feng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China.,Nantong Key Lab of Intelligent and New Energy Materials, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
4
|
Huang XD, Ma XF, Shang T, Zhang YQ, Zheng LM. Photocontrollable Magnetism and Photoluminescence in a Binuclear Dysprosium Anthracene Complex. Inorg Chem 2023; 62:1864-1874. [PMID: 35830693 DOI: 10.1021/acs.inorgchem.2c01210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
By incorporating photoreactive anthracene moieties into binuclear Dy2O2 motifs, we obtain two new compounds with the formulas [Dy2(SCN)4(L)2(dmpma)4] (1) and [Dy2(SCN)4(L)2(dmpma)2(CH3CN)2] (2), where HL is 4-methyl-2,6-dimethoxyphenol and dmpma is dimethylphosphonomethylanthracene. Compound 1 contains face-to-face π-π interacted anthracene groups that meet the Schmidt rule for a [4 + 4] photocycloaddition reaction, while stacking of the anthracene groups in compound 2 does not meet the Schmidt rule. Compound 1 undergoes a reversible single-crystal-to-single-crystal structural transformation upon UV-light irradiation and thermal annealing, forming a one-dimensional coordination polymer of [Dy2(SCN)4(L)2(dmpma)2(dmpma2)]n (1UV). The process is concomitant with changes in the magnetic dynamics and photoluminescent properties. The spin-reversal energy barrier is significantly increased from 1 (55.9 K) to 1UV (116 K), and the emission color is changed from bright yellow for 1 to weak blue for 1UV. This is the first binuclear lanthanide complex that exhibits synergistic photocontrollable magnetic dynamics and photoluminescence. Ab initio calculations are conducted to understand the magnetostructural relationships of compounds 1, 1UV, and 2.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiu-Fang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Tao Shang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Li HQ, Wang GL, Sun YC, Zhang YQ, Wang XY. Solvent Modification of the Structures and Magnetic Properties of a Series of Dysprosium(III) Single-Molecule Magnets. Inorg Chem 2022; 61:17537-17549. [DOI: 10.1021/acs.inorgchem.2c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guo-Lu Wang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing210023, China
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Yang H, Fu YP, Huang Y, Chen XL, Qiao D, Cui HL. A mixed-valence [Co II4Co III2] cluster with defect disk-shaped topology. Acta Crystallogr C Struct Chem 2022; 78:488-492. [PMID: 36063376 PMCID: PMC9444020 DOI: 10.1107/s2053229622005885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
The employment of the new Schiff base ligand 2-[(4-chloro-2-hydroxybenzylideneamino)methyl]phenol (H2L) bearing O2N donors for the preparation of a novel Co6 cluster is reported. The hexanuclear cobalt complex, namely, di-μ2-acetatotetrakis{μ2-2-[(4-chloro-2-oxidobenzylideneamino)methyl]phenolato}tetra-μ3-methanolato-tetracobalt(II)dicobalt(III), [CoII4CoIII2(C14H10ClNO2)4(CH3COO)2(CH3O)4], was obtained using Co(CH3COO)2·4H2O and H2L as starting materials in MeOH under solvothermal conditions. The six metal ions are linked together by the μ3-O atoms of four deprotonated MeOH molecules, two CH3COO- units and six phenolate O atoms of four L2- ligands to form a defect disk-shaped topology. DC magnetic susceptibility investigations revealed the existence of antiferromagnetic interactions in the Co6 cluster.
Collapse
Affiliation(s)
- Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, Yan’an University, Yan’an 716000, People’s Republic of China
| | - Yu-Pei Fu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, Yan’an University, Yan’an 716000, People’s Republic of China
| | - Yuan Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiao-Li Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, Yan’an University, Yan’an 716000, People’s Republic of China
| | - Dan Qiao
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, Yan’an University, Yan’an 716000, People’s Republic of China
| | - Hua-Li Cui
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, Yan’an University, Yan’an 716000, People’s Republic of China
| |
Collapse
|
7
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. Three angular Zn 2Dy complexes showing the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01759h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three isostructural Zn2Dy complexes displaying the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
8
|
Pramanik K, Sun YC, Brandão P, Jana NC, Wang XY, Panja A. Macrocycle supported dinuclear lanthanide complexes with different β-diketonate co-ligands displaying zero field single-molecule magnetic behaviour. NEW J CHEM 2022. [DOI: 10.1039/d2nj01017h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different sets of isomorphous dinuclear Gd/Dy complexes with an uncommon macrocyclic ligand and β-diketonate co-ligands were reported in which Dy2 analogues are zero field SMMs.
Collapse
Affiliation(s)
- Kuheli Pramanik
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| |
Collapse
|
9
|
Sun G, Huang X, Shang T, Yan S, Bao S, Lu X, Zhang Y, Zheng L. Polar Lanthanide Anthracene Complexes Exhibiting Magnetic, Luminescent and Dielectric Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Guo‐Bin Sun
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Xin‐Da Huang
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Tao Shang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University Nanjing 210023 China
| | - Shuo Yan
- National Laboratory of Solid State Microstructures and Physics School Nanjing University Nanjing 210093 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Song‐Song Bao
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Xiao‐Mei Lu
- National Laboratory of Solid State Microstructures and Physics School Nanjing University Nanjing 210093 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University Nanjing 210023 China
| | - Li‐Min Zheng
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| |
Collapse
|