Zhang X, Shi XR, Wang P, Bao Z, Huang M, Xu Y, Xu S. Bio-inspired design of NiFeP nanoparticles embedded in (N,P) co-doped carbon for boosting overall water splitting.
Dalton Trans 2023;
52:6860-6869. [PMID:
37157968 DOI:
10.1039/d3dt00583f]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The design and synthesis of cost-effective and stable bifunctional electrocatalysts for water splitting via a green and sustainable fabrication way remain a challenging problem. Herein, a bio-inspired method was used to synthesize NiFeP nanoparticles embedded in (N,P) co-doped carbon with the added carbon nanotubes. The obtained Ni0.8Fe0.2P-C catalyst displayed excellent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in both alkaline and alkaline simulated seawater solutions. The optimal Ni0.8Fe0.2P-C/NF only needs overpotentials of 45 and 242 mV to reach the current density of 10 mA cm-2 under HER and OER working conditions in 1.0 M KOH solution, respectively. First-principles calculations revealed the presence of a strong interaction between the carbon layer and metal phosphide nanoparticles. Benefiting from this and carbon nanotubes modification, the fabricated Ni0.8Fe0.2P-C presents impressive stability, working continuously for 100 h without collapse. A low alkaline cell voltage of 1.56 V for the assembled Ni0.8Fe0.2P-C/NF//Ni0.8Fe0.2P-C/NF electrocatalyzer could afford a current density of 10 mA cm-2. Moreover, when integrated with a photovoltaic device, the bifunctional Ni0.8Fe0.2P-C electrocatalyst demonstrates application potential for sustainable solar-driven water electrolysis.
Collapse