1
|
Kou M, Qin F, Wang Y, Peng L, Hu Z, Zhao H, Zhang Z. Determination of singlet oxygen quantum yield based on the behavior of solvent dimethyl sulfoxide oxidation by singlet oxygen. Anal Chim Acta 2024; 1329:343222. [PMID: 39396287 DOI: 10.1016/j.aca.2024.343222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) is emerging as a promising cancer treatment. The PDT efficacy is primarily attributed to the generation of singlet oxygen (1O2), stemming from the integrated effects of the photosensitizer, oxygen, and light. The singlet oxygen quantum yield (ΦΔ) serves as a bridge that links these parameters to the overall efficacy of PDT. The near-infrared luminescence of 1O2 provides a direct way for determining ΦΔ, but suffers from a poor signal-to-noise ratio. While the chemical trap probe method is detection-friendly, but it has a strict requirement for the excitation wavelength. Therefore, the existing methods for ΦΔ measurement are insufficient. RESULTS In this work, we developed an approach to determine ΦΔ of a broader range of photosensitizers using only the commonly used solvent dimethyl sulfoxide (DMSO), which can be oxidized by 1O2 to dimethyl sulfone. This method establishes the relationship between 1O2 production and changes in DMSO absorption spectra, eliminating the need for additional chemical probes. This method was validated by measuring the ΦΔ of rose bengal (RB) through systematic changes in absorption spectrum of DMSO under various RB concentrations and different excitation light power densities. Moreover, the ΦΔ of hematoporphyrin monomethyl ether (HMME), as determined by this method, is consistent with measurements obtained using the 1,3-diphenylisobenzofuran (DPBF) trapping probe. This consistency further validates the reliability of this method. SIGNIFICANCE AND NOVELTY This work presents a direct, probe-free method to determine ΦΔ, reducing potential interference and expanding the range of useable excitation wavelengths. Its ability to measure ΦΔ using only DMSO enhances the accuracy of photosensitizer measurement, and broadens the applicability of the method to a wide range of samples, thereby advancing research on the properties of photosensitizers and further promoting the development of PDT.
Collapse
Affiliation(s)
- Meng Kou
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Feng Qin
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yongda Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lixin Peng
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Zheng Hu
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hua Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguo Zhang
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China; School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
2
|
Javanmard Z, Pourhajibagher M, Bahador A. New strategies to enhance antimicrobial photo-sonodynamic therapy based on nanosensitizers against bacterial infections. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01206-8. [PMID: 39367131 DOI: 10.1007/s12223-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
3
|
Rajput SS, Raghuvanshi N, Banana T, Yadav P, Alam MM. Why does the orientation of azulene affect the two-photon activity of a porphyrinoid-azulene system? Phys Chem Chem Phys 2024; 26:15611-15619. [PMID: 38758026 DOI: 10.1039/d4cp00438h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Attaching a dipolar molecule in a symmetric system induces a major change in the electronic structure, which may be reflected as the enhancement of the optical and charge-transfer properties of the combined system as compared to the pristine ones. Furthermore, the orientation of the dipolar molecule may also affect the said properties. This idea is explored in this work by taking porphyrinoid molecules as the pristine systems. We attached azulene, a dipolar molecule, at various positions of five porphyrinoid cores and studied the effect on charge-transfer and one- and two-photon absorption properties using the state-of-the-art RICC2 method. The attachment of azulene produces two major effects - firstly it introduces asymmetry in the system and, secondly, being dipolar, it makes the resultant molecule dipolar/quadrupolar. Porphyrin, N-confused porphyrin, sub-porphyrin, sapphyrin, and hexaphyrin are used as core porphyrinoid systems. The change in charge-transfer has been studied using the orbital analysis and charge-transfer distance parameter for the first five singlet states of the systems. The effect of orientation of azulene on the said properties is also explored. The insights gained from our observations are explored further at the dipole and transition dipole moment levels using a three-state model.
Collapse
Affiliation(s)
- Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Nikita Raghuvanshi
- Centre for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Pooja Yadav
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| |
Collapse
|
4
|
Zhang WY, Li GC, Fan Y, Sun XQ, Wang B, Zhang CY, Feng XX, Xu WB, Liu JC. Synthesis of three cisplatin-conjugated asymmetric porphyrin photosensitizers for photodynamic therapy. Dalton Trans 2024; 53:582-590. [PMID: 38059743 DOI: 10.1039/d3dt02900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Photodynamic therapy provides a promising solution for treating various cancer types. In this study, three distinct asymmetric porphyrin-cisplatin complex photosensitizers (ZnPt-P1, ZnPt-P2, and ZnPt-P3) were synthesized, each having unique side chains. Through a set of experiments involving singlet oxygen detection and density functional theory, ZnPt-P1 was demonstrated to have excellent efficacy, exceeding that of ZnPt-P2 and ZnPt-P3. Notably, ZnPt-1 showed significant phototoxicity while maintaining low dark toxicity when tested on HepG2 cells. Additionally, further examination revealed that ZnPt-P1 had the capability to generate reactive oxygen species within cancer cells when exposed to light irradiation. Taken together, these results highlight the potential of ZnPt-P1 as a photosensitizer for use in photodynamic therapy. This study contributes to enhancing cancer treatment methodologies and provides insights for the future development of innovative drugs for photosensitization.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Gui-Chen Li
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Yan Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xue-Qin Sun
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Bo Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Chun-Yan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiao-Xia Feng
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Wei-Bing Xu
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Jia-Cheng Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
5
|
Soy R, Babu B, Mack J, Nyokong T. The photodynamic activity properties of a series of structurally analogous tetraarylporphyrin, chlorin and N-confused porphyrin dyes and their Sn(IV) complexes. Photodiagnosis Photodyn Ther 2023; 44:103815. [PMID: 37777078 DOI: 10.1016/j.pdpdt.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
A series of tetraarylporphyrin, -chlorin and N-confused porphyrin dyes with 4‑methoxy‑meso-aryl rings (1-Por, 1-Chl and 1-NCP) and their Sn(IV) complexes (1-SnPor, 1-SnChl and 1-SnNCP) have been synthesized and characterized. The heavy atom effect of the Sn(IV) ion results in relatively high singlet oxygen quantum yield values of 0.67, 0.71 and 0.85 for 1-SnPor, 1-SnChl and 1-SnNCP, respectively. The photodynamic activities of 1-Por, 1-Chl, 1-NCP, 1-SnPor, 1-SnChl and 1-SnNCP were determined against MCF-7 breast cancer cells through illumination with Thorlabs 625 or 660 nm (240 or 280 mW.cm-2) light emitting diodes (LEDs) for 20 min. The IC50 values for 1-SnChl and 1-SnNCP lie between 1.4 - 6.1 and 1.6 - 4.8 µM upon photoirradiation with the 660 and 625 nm LEDs, respectively, while higher values of >10 µM were obtained for 1-SnPor and the free base dyes. In a similar manner, 1-SnChl and 1-SnNCP were found to also have significantly higher photodynamic antimicrobial activity against planktonic Gram-(+) Staphylococcus aureus and Gram-(-) Escherichia coli bacteria than the other dyes studied. Upon illumination with Thorlabs 625 and 660 nm LEDs for 75 min, Log10 reduction values of 7.62 and > 2.40-3.69 were obtained with 1 and 5 µM solutions, respectively.
Collapse
Affiliation(s)
- Rodah Soy
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa; Department of Chemistry, SRM University - AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
6
|
Harmandar K, Küçük T, Önal E, İbişoğlu H, Atilla D, Şahin Ün Ş. New asymmetric AB3-type free-base and metalloporphyrin-cyclotriphosphazene conjugates: Synthesis and photophysical-photochemical properties. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Soy R, Babu B, Mack J, Nyokong T. The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes. Molecules 2023; 28:molecules28104030. [PMID: 37241769 DOI: 10.3390/molecules28104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A series of tetraarylchlorins with 3-methoxy-, 4-hydroxy- and 3-methoxy-4-hydroxyphenyl meso-aryl rings (1-3-Chl) and their Sn(IV) complexes (1-3-SnChl) were synthesized and characterized so that their potential utility as photosensitizer dyes for use in photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) can be assessed. The photophysicochemical properties of the dyes were assessed prior to in vitro PDT activity studies against MCF-7 breast cancer cells through irradiation with Thorlabs 625 or 660 nm LED for 20 min (240 or 280 mW·cm-2). PACT activity studies were performed against both planktonic bacteria and biofilms of Gram-(+) S. aureus and Gram-(-) E. coli upon irradiation with Thorlabs 625 and 660 nm LEDs for 75 min. The heavy atom effect of the Sn(IV) ion results in relatively high singlet oxygen quantum yield values of 0.69-0.71 for 1-3-SnChl. Relatively low IC50 values between 1.1-4.1 and 3.8-9.4 µM were obtained for the 1-3-SnChl series with the Thorlabs 660 and 625 nm LEDs, respectively, during the PDT activity studies. 1-3-SnChl were also found to exhibit significant PACT activity against planktonic S. aureus and E. coli with Log10 reduction values of 7.65 and >3.0, respectively. The results demonstrate that the Sn(IV) complexes of tetraarylchlorins merit further in depth study as photosensitizers in biomedical applications.
Collapse
Affiliation(s)
- Rodah Soy
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
8
|
Mariammal M, Sahane N, Tiwari S. Water-soluble anionic N-confused porphyrin for sensitive and selective detection of heavy metal pollutants in aqueous environment. ANAL SCI 2023:10.1007/s44211-023-00341-5. [PMID: 37140885 DOI: 10.1007/s44211-023-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Efficient detection and quantification of metal ions in real time and in a cost-effective manner is a critical step in combating the increasing danger of heavy metal contamination of our biosphere. The potential of water-soluble anionic derivative of N-confused tetraphenylporphyrin (WS-NCTPP) has been investigated for quantitative detection of heavy metal ions. The results show that the photophysical properties of WS-NCTPP differ significantly in the presence of four metal ions, namely Hg(II), Zn(II), Co(II) and Cu(II). The variation in the spectral behaviour is driven by the formation of 1:1 complexes with all the four cations with varied degree of complexation. The selectivity of the sensing is studied through interference studies, indicating maximum selectivity for Hg(II) cations. Computational studies of the structural features of the metal complexes with WS-NCTPP help in establishing the geometry and binding interactions between the metal ions and the porphyrin nucleus. The results demonstrate the promising potential of the NCTPP probe which should be utilized for detection of heavy metal ions, especially mercury, in the near future.
Collapse
Affiliation(s)
- Muthu Mariammal
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Nisha Sahane
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Shraeddha Tiwari
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
9
|
Białek MJ, Hurej K, Furuta H, Latos-Grażyński L. Organometallic chemistry confined within a porphyrin-like framework. Chem Soc Rev 2023; 52:2082-2144. [PMID: 36852929 DOI: 10.1039/d2cs00784c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The world of modified porphyrins changed forever when an N-confused porphyrin (NCP), a porphyrin isomer, was first published in 1994. The replacement of one inner nitrogen with a carbon atom revolutionised the chemistry that one is able to perform within the coordination cavity. One could explore new pathways in the organometallic chemistry of porphyrins by forcing a carbon fragment from the ring or an inner substituent to sit close to an inserted metal ion. Since the NCP discovery, a series of modifications became available to tune the coordination properties of the cavity, introducing a fascinating realm of carbaporphyrins. The review surveys all possible carbatetraphyrins(1.1.1.1) and their spectacular coordination and organometallic chemistry.
Collapse
Affiliation(s)
- Michał J Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50383 Wrocław, Poland.
| | - Karolina Hurej
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50383 Wrocław, Poland.
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | |
Collapse
|
10
|
Organometallic Chemistry within the Structured Environment Provided by the Macrocyclic Cores of Carbaporphyrins and Related Systems. Molecules 2023; 28:molecules28031496. [PMID: 36771158 PMCID: PMC9920839 DOI: 10.3390/molecules28031496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The unique environment within the core of carbaporphyrinoid systems provides a platform to explore unusual organometallic chemistry. The ability of these structures to form stable organometallic derivatives was first demonstrated for N-confused porphyrins but many other carbaporphyrin-type systems were subsequently shown to exhibit similar or complementary properties. Metalation commonly occurs with catalytically active transition metal cations and the resulting derivatives exhibit widely different physical, chemical and spectroscopic properties and range from strongly aromatic to nonaromatic and antiaromatic species. Metalation may trigger unusual, highly selective, oxidation reactions. Alkyl group migration has been observed within the cavity of metalated carbaporphyrins, and in some cases ring contraction of the carbocyclic subunit takes place. Over the past thirty years, studies in this area have led to multiple synthetic routes to carbaporphyrinoid ligands and remarkable organometallic chemistry has been reported. An overview of this important area is presented.
Collapse
|
11
|
Likhonina AE, Bryksina DA, Mamardashvili NZ. Fluorescent and Acid-Base Indicator Properties of Complexes Based on Sn(IV) Octaethylporphyrinate and Molecules of Dye: Phenolphthalein and 1,3,5,7-Tetramethyl-8-(4-hydroxyphenyl) (BODIPY). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
pH indicator and rotary fluorescent properties of the Sn(IV)-octaetylporphyrin-(BODIPY)2 triad. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Dingiswayo S, Burgess K, Babu B, Mack J, Nyokong T. Photodynamic Antitumor and Antimicrobial Activities of Free-Base Tetra(4-methylthiolphenyl)chlorin and Its Tin(IV) Complex. Chempluschem 2022; 87:e202200115. [PMID: 35604018 DOI: 10.1002/cplu.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Indexed: 11/09/2022]
Abstract
Meso-tetra(4-methylthiolphenyl)chlorin (3) and its Sn(IV) complex (3-Sn) have been synthesized and characterized. The heavy atom effects of the Sn(IV) ion and sulfur atoms result in relatively high singlet oxygen quantum yield values of 0.40 and 0.48. The photodynamic activities against MCF-7 breast cancer cells were determined through irradiation with a Thorlabs 660 nm LED for 30 min (280 mW.cm-2). IC50 values of 7.8 and 3.9 μM were obtained, respectively. 3-Sn was found to have significant photodynamic antimicrobial activity against both gram-(+) S. aureus and gram-(-) E. coli bacteria upon irradiation with a Thorlabs 660 nm LED for 75 min.
Collapse
Affiliation(s)
- Somila Dingiswayo
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Kristen Burgess
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| |
Collapse
|
14
|
Toganoh M, Furuta H. Creation from Confusion and Fusion in the Porphyrin World─The Last Three Decades of N-Confused Porphyrinoid Chemistry. Chem Rev 2022; 122:8313-8437. [PMID: 35230807 DOI: 10.1021/acs.chemrev.1c00065] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Confusion is a novel concept of isomerism in porphyrin chemistry, delivering a steady stream of new chemistry since the discovery of N-confused porphyrin, a porphyrin mutant, in 1994. These days, the number of confused porphyrinoids is increasing, and confusion and associated fusion are found in various fields such as supramolecular chemistry, materials chemistry, biological chemistry, and catalysts. In this review, the birth and growth of confused porphyrinoids in the last three decades are described.
Collapse
Affiliation(s)
- Motoki Toganoh
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Li C, Wang Y, Wu S, Zhuang W, Huang Z, Zhou L, Li Y, Chen M, You J. Direct [4 + 2] Cycloaddition to Isoquinoline-Fused Porphyrins for Near-Infrared Photodynamic Anticancer Agents. Org Lett 2022; 24:175-180. [PMID: 34889619 DOI: 10.1021/acs.orglett.1c03804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis of efficient porphyrin-based photosensitizers with intense near-infrared (NIR) absorption is in high demand for photodynamic therapy (PDT) but remains a challenging task. Herein we show the construction of a type of isoquinoline-fused porphyrins 3 and 4 with an impressive NIR-absorbing capacity. In light of the extraordinary singlet oxygen generation capabilities of 3 upon NIR irradiation, the representative nanoparticles (3a-NPs) assembled show excellent tumoricidal behavior with good biocompatibility in the phototherapeutic window (650-850 nm).
Collapse
Affiliation(s)
- Chengming Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Yinchan Wang
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Sisi Wu
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Zhenmei Huang
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Linsen Zhou
- Institute of Materials, Chinese Academy of Engineering Physics, Jiangyou 621908, P. R. China
| | - Yinggang Li
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
16
|
Babu B, Mack J, Nyokong T. A Sn( iv) porphyrin with mitochondria targeting properties for enhanced photodynamic activity against MCF-7 cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00350c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A Sn(iv) porphyrin with a mitochondria targeting triphenylphosphonium moiety has a high ΦΔ value (ca. 0.72) and does not aggregate in aqueous solution. The dye exhibits favorable photodynamic activity against MCF-7 cells with an IC50 value of 2.9 μM.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
17
|
Development of erythrosine-based photodynamic therapy with a targeted drug delivery system to induce HepG2 cell apoptosis in vitro. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Latest Innovations and Nanotechnologies with Curcumin as a Nature-Inspired Photosensitizer Applied in the Photodynamic Therapy of Cancer. Pharmaceutics 2021; 13:pharmaceutics13101562. [PMID: 34683855 PMCID: PMC8539945 DOI: 10.3390/pharmaceutics13101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
In the context of the high incidence of cancer worldwide, state-of-the-art photodynamic therapy (PDT) has entered as a usual protocol of attempting to eradicate cancer as a minimally invasive procedure, along with pharmacological resources and radiation therapy. The photosensitizer (PS) excited at certain wavelengths of the applied light source, in the presence of oxygen releases several free radicals and various oxidation products with high cytotoxic potential, which will lead to cell death in irradiated cancerous tissues. Current research focuses on the potential of natural products as a superior generation of photosensitizers, which through the latest nanotechnologies target tumors better, are less toxic to neighboring tissues, but at the same time, have improved light absorption for the more aggressive and widespread forms of cancer. Curcumin incorporated into nanotechnologies has a higher intracellular absorption, a higher targeting rate, increased toxicity to tumor cells, accelerates the activity of caspases and DNA cleavage, decreases the mitochondrial activity of cancer cells, decreases their viability and proliferation, decreases angiogenesis, and finally induces apoptosis. It reduces the size of the primary tumor, reverses multidrug resistance in chemotherapy and decreases resistance to radiation therapy in neoplasms. Current research has shown that the use of PDT and nanoformulations of curcumin has a modulating effect on ROS generation, so light or laser irradiation will lead to excessive ROS growth, while nanocurcumin will reduce the activation of ROS-producing enzymes or will determine the quick removal of ROS, seemingly opposite but synergistic phenomena by inducing neoplasm apoptosis, but at the same time, accelerating the repair of nearby tissue. The latest curcumin nanoformulations have a huge potential to optimize PDT, to overcome major side effects, resistance to chemotherapy, relapses and metastases. All the studies reviewed and presented revealed great potential for the applicability of nanoformulations of curcumin and PDT in cancer therapy.
Collapse
|
19
|
Polat E, Kang K. Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines 2021; 9:584. [PMID: 34063973 PMCID: PMC8224061 DOI: 10.3390/biomedicines9060584] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Health problems and reduced treatment effectiveness due to antimicrobial resistance have become important global problems and are important factors that negatively affect life expectancy. Antimicrobial photodynamic therapy (APDT) is constantly evolving and can minimize this antimicrobial resistance problem. Reactive oxygen species produced when nontoxic photosensitizers are exposed to light are the main functional components of APDT responsible for microbial destruction; therefore, APDT has a broad spectrum of target pathogens, such as bacteria, fungi, and viruses. Various photosensitizers, including natural extracts, compounds, and their synthetic derivatives, are being investigated. The main limitations, such as weak antimicrobial activity against Gram-negative bacteria, solubility, specificity, and cost, encourage the exploration of new photosensitizer candidates. Many additional methods, such as cell surface engineering, cotreatment with membrane-damaging agents, nanotechnology, computational simulation, and sonodynamic therapy, are also being investigated to develop novel APDT methods with improved properties. In this review, we summarize APDT research, focusing on natural photosensitizers used in in vitro and in vivo experimental models. In addition, we describe the limitations observed for natural photosensitizers and the methods developed to counter those limitations with emerging technologies.
Collapse
Affiliation(s)
- Ece Polat
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
- Division of Bio-Medical Science Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Gangwon-do, Korea
| |
Collapse
|
20
|
Babu B, Mack J, Nyokong T. A heavy-atom-free π-extended N-confused porphyrin as a photosensitizer for photodynamic therapy. NEW J CHEM 2021. [DOI: 10.1039/d1nj00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A heavy-atom-free π-extended N-confused porphyrin is reported that is suitable for use as a photosensitizer for photodynamic therapy in both the green region and therapeutic window.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda
- South Africa
| | - John Mack
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda
- South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda
- South Africa
| |
Collapse
|