1
|
Ducilon J, Nicholas AD, Surbella RG, Gorden AEV. Neptunyl Pyrrophen Complexes: Exploring Schiff Base Chemistry with Multidentate Acyclic Ligands and Transuranics. Chemistry 2024; 30:e202402047. [PMID: 39083651 DOI: 10.1002/chem.202402047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
We report the synthesis, structure, and characterization of two novel neptunyl complexes (NpO2L1 and NpO2L2) constructed from phenylene-substituted benzyl ester bis(pyrrole)phenylenediamine (named "pyrrophen") ligands. In both cases, the neptunium center exists in the +6 oxidation state,. As our specific interest is in exploring the chemistry of neptunium compounds containing the linear neptunyl ion (NpO2 2+) through equatorially coordinating the metal by multidentate organic ligands, we have identified the differences that are likely to cause discrepancy between the two complexes by examining the ions and their coordinative environments through single-crystal X-ray crystallography, diffuse reflectance, and Raman spectroscopy. This is the first time pyrrophen has been utilized in Np chemistry and demonstrates a new platform to study 5 f electron participation and coordination.
Collapse
Affiliation(s)
| | - Aaron D Nicholas
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Robert G Surbella
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | | |
Collapse
|
2
|
Peterson A, Kelly SN, Arino T, Gunther SO, Ouellette ET, Wacker JN, Woods JJ, Teat SJ, Lukens WW, Arnold J, Abergel RJ, Minasian SG. Formation of Fully Stoichiometric, Oxidation-State Pure Neptunium and Plutonium Dioxides from Molecular Precursors. Inorg Chem 2024; 63:18417-18428. [PMID: 39284039 PMCID: PMC11445724 DOI: 10.1021/acs.inorgchem.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Amidate-based ligands (N-(tert-butyl)isobutyramide, ITA) bind κ2 to form homoleptic, 8-coordinate complexes with tetravalent 237Np (Np(ITA)4, 1-Np) and 242Pu (Pu(ITA)4, 1-Pu). These compounds complete an isostructural series from Th, U-Pu and allow for the direct comparison between many of the early actinides with stable tetravalent oxidation states by nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction (SCXRD). The molecular precursors are subjected to controlled thermolysis under mild conditions with the exclusion of exogenous air and moisture, facilitating the removal of the volatile organic ligands and ligand byproducts. The preformed metal-oxygen bond in the precursor, as well as the metal oxidation state, are maintained through the decomposition, forming fully stoichiometric, oxidation-state pure NpO2 and PuO2. Powder X-ray diffraction (PXRD), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) elemental mapping supported the evaluation of these high-purity materials. This chemistry is applicable to a wide range of metals, including actinides, with accessible tetravalent oxidation states, and provides a consistent route to analytical standards of importance to the field of nuclear nonproliferation, forensics, and fundamental studies.
Collapse
Affiliation(s)
- Appie Peterson
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sheridon N. Kelly
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Trevor Arino
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - S. Olivia Gunther
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Erik T. Ouellette
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jennifer N. Wacker
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joshua J. Woods
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Simon J. Teat
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wayne W. Lukens
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Stefan G. Minasian
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Dempsey RL, Kaltsoyannis N. Computational study of the interactions of tetravalent actinides (An = Th-Pu) with the α-Fe 13 Keggin cluster. Dalton Trans 2024; 53:5947-5956. [PMID: 38456808 DOI: 10.1039/d3dt03761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In recent years, evidence has emerged that actinide (An) uptake at the enhanced actinide removal plant (EARP) at the UK's Sellafield nuclear site occurs via An interactions with an α-Fe13 Keggin molecular cluster during ferrihydrite formation. We here study theoretically the substitution of aquo complexes of the actinides Th-Pu onto a Na-decorated α-Fe13 Keggin cluster using DFT at the PBE0 level. The optimised Pu-O and Pu-Fe distances are in good agreement with experiment and Na/An substitutions are significantly favourable energetically, becoming more so across the early 5f series, with the smallest and largest ΔrG° being for Th and Pu at -335.7 kJ mol-1 and -396.0 kJ mol-1 respectively. There is strong correlation between the substitution reaction energy and the ionic radii of the actinides (Δrε0R2 = 0.97 and ΔrG° R2 = 0.91), suggesting that the principal An-Keggin binding mode is ionic. Notwithstanding this result, Mulliken and natural population analyses reveal that covalency increases from Th-Pu in these systems, supported by analysis of the occupied Kohn-Sham molecular orbitals where enhanced An(5f)-O(2p) overlap is observed in the Np and Pu systems. By contrast, quantum theory of atoms in molecules analysis shows that U-Keggin binding is the most covalent among the five actinides, in keeping with previous studies.
Collapse
Affiliation(s)
- Ryan L Dempsey
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | | |
Collapse
|
4
|
Halogen atoms induced reversible supramolecular assembly and pH-response of the fluorescence properties: Low driving force triggered fluorescence switch with high SNR and high stability. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Bansal D, Kaden P, Patzschke M, März J, Schmidt M. Comparative Analysis of Mononuclear 1:1 and 2:1 Tetravalent Actinide (U, Th, Np) Complexes: Crystal Structure, Spectroscopy, and Electrochemistry. Inorg Chem 2022; 61:10509-10520. [PMID: 35736135 DOI: 10.1021/acs.inorgchem.2c01405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Six mononuclear tetravalent actinide complexes (1-6) have been synthesized using a new Schiff base ligand 2-methoxy-6-(((2-methyl-1-(pyridin-2-yl)propyl)imino)methyl)phenol (HLpr). The HLpr is treated with tetravalent actinide elements in varied stoichiometries to afford mononuclear 1:1 complexes [MCl3-Lpr·nTHF] (1-3) and 2:1 complexes [MCl2-L2pr] (4-6) (M = Th4+ (1 and 4), U4+ (2 and 5), and Np4+ (3 and 6)). All complexes are characterized using different analytical techniques such as IR, NMR, and absorption spectroscopy as well as crystallography. UV-vis spectroscopy revealed more red-shifted absorption spectra for 2:1 complexes as compared to 1:1 complexes. 1H NMR of Th(IV) complexes exhibit diamagnetic spectra, whereas U(IV) and Np(IV) complexes revealed paramagnetically shifted 1H NMR. Interestingly, NMR signals are paramagnetically shifted between -70 and 40 ppm in 2 and 3 but are confined within -35 to 25 ppm in 2:1 complexes 5 and 6. Single-crystal structures for 1:1 complexes revealed an eight-coordinated Th(IV) complex (1) and seven-coordinated U(IV) (2) and Np(IV) (3) complexes. However, all 2:1 complexes 4-6 were isolated as eight-coordinated isostructural molecules. The geometry around the Th4+ center in 1 is found to be trigonal dodecahedral and capped trigonal prismatic around U(IV) and Np(IV) centers in 2 and 3, respectively. However, An4+ centers in 2:1 complexes are present in dodecahedral geometry. Importantly, 2:1 complexes exhibit increased bond distances in comparison to their 1:1 counterparts as well as interesting bond modulation with respect to ionic radii of An(IV) centers. Cyclic voltammetry displays an increased oxidation potential of the ligand by 300-500 mV, after coordination with An4+. CV studies indicate Th(IV)/Th(II) reduction beyond -2.3 V, whereas attempts were made to identify redox potentials for U(IV) and Np(IV) centers. Spectroscopic binding studies reveal that complex stability in 1:1 stoichiometry follows the order Th4+ ≈ U4+ > Np4+.
Collapse
Affiliation(s)
- Deepak Bansal
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Kaden
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Michael Patzschke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Juliane März
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Moritz Schmidt
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
6
|
Li Z, Cao Y, Yi F, Mao X, Wang Y. Systematic investigation on durability of glass–ceramics containing CePO4: orthogonal analysis. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Köhler L, Patzschke M, Schmidt M, Stumpf T, März J. How 5 f Electron Polarisability Drives Covalency and Selectivity in Actinide N-Donor Complexes. Chemistry 2021; 27:18058-18065. [PMID: 34747538 PMCID: PMC9299701 DOI: 10.1002/chem.202102849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 01/12/2023]
Abstract
We report a series of isostructural tetravalent actinide (Th, U−Pu) complexes with the N‐donor ligand N,N’‐ethylene‐bis((pyrrole‐2‐yl)methanimine) (H2L, H2pyren). Structural data from SC‐XRD analysis reveal [An(pyren)2] complexes with different An−Nimine versus An−Npyrrolide bond lengths. Quantum chemical calculations elucidated the bonding situation, including differences in the covalent character of the coordinative bonds. A comparison to the intensely studied analogous N,N′‐ethylene‐bis(salicylideneimine) (H2salen)‐based complexes [An(salen)2] displays, on average, almost equal electron sharing of pyren or salen with the AnIV, pointing to a potential ligand‐cage‐driven complex stabilisation. This is shown in the fixed ligand arrangement of pyren and salen in the respective AnIV complexes. The overall bond strength of the pure N‐donor ligand pyren to AnIV (An=Th, U, Np, Pu) is slightly weaker than to salen, with the exception of the PaIV complex, which exhibits extraordinarily high electron sharing of pyren with PaIV. Such an altered ligand preference within the early AnIV series points to a specificity of the 5f1 configuration, which can be explained by polarisation effects of the 5 f electrons, allowing the strongest f electron backbonding from PaIV (5f1) to the N donors of pyren.
Collapse
Affiliation(s)
- Luisa Köhler
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Michael Patzschke
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Juliane März
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| |
Collapse
|
8
|
Gilson SE, Burns PC. The crystal and coordination chemistry of neptunium in all its oxidation states: An expanded structural hierarchy of neptunium compounds. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Guevara-Vela JM, Gallegos M, Valentín-Rodríguez MA, Costales A, Rocha-Rinza T, Pendás ÁM. On the Relationship between Hydrogen Bond Strength and the Formation Energy in Resonance-Assisted Hydrogen Bonds. Molecules 2021; 26:4196. [PMID: 34299473 PMCID: PMC8303970 DOI: 10.3390/molecules26144196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Resonance-assisted hydrogen bonds (RAHB) are intramolecular contacts that are characterised by being particularly energetic. This fact is often attributed to the delocalisation of π electrons in the system. In the present article, we assess this thesis via the examination of the effect of electron-withdrawing and electron-donating groups, namely -F, -Cl, -Br, -CF3, -N(CH3)2, -OCH3, -NHCOCH3 on the strength of the RAHB in malondialdehyde by using the Quantum Theory of Atoms in Molecules (QTAIM) and the Interacting Quantum Atoms (IQA) analyses. We show that the influence of the investigated substituents on the strength of the investigated RAHBs depends largely on its position within the π skeleton. We also examine the relationship between the formation energy of the RAHB and the hydrogen bond interaction energy as defined by the IQA method of wave function analysis. We demonstrate that these substituents can have different effects on the formation and interaction energies, casting doubts regarding the use of different parameters as indicators of the RAHB formation energies. Finally, we also demonstrate how the energy density can offer an estimation of the IQA interaction energy, and therefore of the HB strength, at a reduced computational cost for these important interactions. We expected that the results reported herein will provide a valuable understanding in the assessment of the energetics of RAHB and other intramolecular interactions.
Collapse
Affiliation(s)
- José Manuel Guevara-Vela
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, Mexico City C.P. 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Miguel Gallegos
- Department of Analytical and Physical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (M.G.); (A.C.)
| | - Mónica A. Valentín-Rodríguez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain;
| | - Aurora Costales
- Department of Analytical and Physical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (M.G.); (A.C.)
| | - Tomás Rocha-Rinza
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, Mexico City C.P. 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (M.G.); (A.C.)
| |
Collapse
|
10
|
Hylland KT, Gerz I, Wragg DS, Øien‐Ødegaard S, Tilset M. The Reactivity of Multidentate Schiff Base Ligands Derived from Bi‐ and Terphenyl Polyamines towards M(II) (M=Ni, Cu, Zn, Cd) and M(III) (M=Co, Y, Lu). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Knut Tormodssønn Hylland
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Isabelle Gerz
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - David S. Wragg
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Sigurd Øien‐Ødegaard
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Mats Tilset
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| |
Collapse
|
11
|
Kloditz R, Radoske T, Schmidt M, Heine T, Stumpf T, Patzschke M. Comprehensive Bonding Analysis of Tetravalent f-Element Complexes of the Type [M(salen)2]. Inorg Chem 2021; 60:2514-2525. [DOI: 10.1021/acs.inorgchem.0c03424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Roger Kloditz
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas Radoske
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Moritz Schmidt
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, Theoretical Chemistry, Technische Universität Dresden, Bergstraße 66c, 01069 Dresden, Germany
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Michael Patzschke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|